InterBase
Database Operations

Disclaimer

Borland International, Inc. (henceforth, Borland) reserves the right to make changes
in specifications and other information contained in this publication without prior
notice. The reader should, in all cases, consult Borland to determine whether or not any
such changes have been made.

The terms and conditions governing the licensing of InterBase software consist solely
of those set forth in the written contracts between Borland and its customers. No
representation or other affirmation of fact contained in this publication including, but
not limited to, statements regarding capacity, response-time performance, suitability
for use, or performance of products described herein shall be deemed to be a warranty
by Borland for any purpose, or give rise to any liability by Borland whatsoever.

In no event shall Borland be liable for any incidental, indirect, special, or consequential
damages whatsoever (including but not limited to lost profits) arising out of or relating
to this publication or the information contained in it, even if Borland has been advised,
knew, or should have known of the possibility of such damages.

The software programs described in this document are confidential information and
proprietary products of Borland.

Restricted Rights Legend. Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subdivision (b) (3) (ii) of the Rights in Technical
Data and Computer Software clause at 52.227-7013.

© Copyright 1993 by Borland International, Inc. All Rights Reserved. InterBase, GDML,
and Pictor are trademarks of Borland International, Inc. All other trademarks are the
property of their respective owners.

Corporate Headquarters: Borland International Inc., 100 Borland Way, P. O. Box
660001, Scotts Valley, CA 95067-0001, (408) 438-5300. Offices in: Australia, Belgium,
Canada, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America,
Malaysia, Netherlands, New Zealand, Singapore, Spain, Sweden, Taiwan, and United
Kingdom.

Software Version: V3.0

Current Printing: October 1993
Documentation Version: v3.0.1

Reprint note

This documentation is a reprint of InterBase V3.0 documentation. It contains most of
the information from InterBase Previous Versions Documentation Corrections and In-
terBase Version 3.2 Documentation Corrections and a new index. For information on
features added since InterBase Version V3.0, consult the appropriate release notes.

Table Of Contents

Preface

Who Should Use this Book ix
Using this Book b
Text Conventions. i xi
Syntax Conventions. i xii
InterBase Documentation xiii
Introduction

OVEIVIEW . .o 1-1
InterBase Utilities. 1-3
For More Information 1-4

Database Backup and Recovery

OVeIVIEW. . . ot e 2-1
Choosing a Backup and Restore Utility 2-3
The gbak Utility. 2-3
Your Operating System Utility. 2-3
Backing UpaDatabase.......... 2-4
Backing Up a DatabasetoTape................................... 2-4
Backing Up a Database in GenericFormat.......................... 2-5
Backing Up a Database on a Remote System 2-5
Restoringa Database. 2-7
Changing Database Characteristics................................... 2-9
Changing the Database Page Size 2-9
Converting a Single-File Database to a Multiple-File Database 2-10
Changing the On Disk Structure 2-11
For More Information 2-12

3

Vi

Database Maintenance

L0 =5 i =) P 3-1
SweepingaDatabase. 3-2
Validating a Database i 3-3
Repairing a Corrupt Database o 3-4
Enabling After-Image Journaling. i i 3-6
Automating Transaction Recovery 3-7
The Two-Phase Commit Process. i, 3-7
Understanding Automated Transaction Recovery 3-7
Using gfix to Recover Transactions 3-8
Automated Transaction Recovery Restrictions 3-9
For More Informationttt 3-10
Journaling
OV VIBW . .« .\ ittt ettt e e e e e e e 4-1
Components of Journaling i i, 4-2
Using Journaling for Disaster Recovery.............. 4-4
UNIX Journalingttt e et 4-5
Starting UNIX Journaling 4-5
Enabling UNIX After-Image Journaling 4-7
Communicating with the Journal Server. 4-8
Disabling UNIX Journalingottt 4-8
Stopping and Restarting UNIX Journaling. 4-9
Changingadournal File. 4-10
Using Journaling to Recover From a Disaster. 4-10
Recovering from a System Disaster.............. 4-11
Recovering from a Human Disaster. 4-12
VMS dournaling.t e e e 4-14
Customizing the VMS Journaling Environment..................... 4-14
Starting VMS Journaling i 4-15
Enabling VMS After-Image Journaling 4-15
Monitoring Journaling Status i . 4-16
Changing Journal Files. i 4-17

Disabling VMS Journaling 4-19

Stopping and Restarting Journaling 4-20
Recovering from a System Disaster 4-21
Recreating a Database up to a Journal Checkpoint 4-23
For More Information 4-26
Disk Shadowing
OVerview. 5-1
Components of Disk Shadowing 5-2
Using Disk Shadowing for Disaster Recovery 5-3
Defining a Shadow 5-4
Defining a Multi-File Shadow. 5-6
Adding an Additional FiletoaShadow 5-7
DeletingaShadow i 5-9
Transaction Considerations 5-10
Activatinga Shadow 5-11
Troubleshooting 5-12
For More Information 5-13

Database Operations Reference

OVervIeW. . o . 6-1
Gbak 6-2
GeOM .o 6-10
GeSU ..o 6-14
GEIX . o e 6-18
Gl .o 6-24
Grst. oo 6-26

vii

viii

Who Should Use this Book

Preface

This book contains information on the InterBase database utilities.

Who Should Use this Book

The audience for the Database Operations manual is a database administrator or user
who wants to know how to maintain InterBase databases. This book assumes some
database knowledge, but no knowledge of how to use any of the InterBase utilities.

Using this Book

Using this Book

This book contains the following chapters:

Chapter 1 Introduces you to all of the InterBase database utili-
ties.

Chapter 2 Describes how to use gbak to backup and restore data-
bases.

Chapter 3 Explains how to use gfix to perform database
maintenance.

Chapter 4 Explains how to use journaling on UNIX and VMS
systems.

Chapter 5 Describes how to set up a disk shadow for a database.

Chapter 6 Contains reference information on the InterBase

utilities.

Text Conventions

Text Conventions

This book uses the following text conventions.

boldface

italic

fixed width font

UPPER CASE

Indicates a command, option, statement, or utility. For
example:

¢ Use the commit command to save your changes.
* Use the sort option to specify record return order.

¢ The case_menu statement displays a menu in the
forms window.

¢ Use gdef to extract a data definition.

Indicates chapter and manual titles; identifies file-
names and pathnames. Also used for emphasis, or to
introduce new terms. For example:

* See the introduction to SQL in the Programmer’s
Guide.

¢ /usr/interbase/lock_header

* Subscripts in RSE references must be closed by
parentheses and separated by commas.

* C permits only zero-based array subscript refer-
ences.

Indicates user-supplied values and example code:
® Srun sysS$system:iscinstall

®* add field population_1950 long

Indicates relation names and field names:

* Secure the RDB$SECURITY_CLASSES system
relation.

* Define a missing value of X for the
LATITUDE_COMPASS field.

Xi

Syntax Conventions

Syntax Conventions

This book uses the following syntax conventions.

{braces}

[brackets]

fixed width font

commalist

italics

Xii

Indicates an alternative item:

* option::= {vertical | horizontal |
transparent}

Indicates an optional item:

¢ dbfield-expression[notjmissing

Indicates user-supplied values and example code:
* $run sys$system:iscinstall
¢ add field population_1950 long

Indicates that the preceding word can be repeated to
create an expression of one or more words, with each
word pair separated by one comma and one or more
spaces.

For example,
field_def-commalist

resolves to:
field_def],field_def],field_def]...]

Indicates a syntax variable:
create_blob blob-variable in
dbfield-expression

Separates items in a list of choices.

Indicates that parts of a program or statement have
been omitted.

InterBase Documentation

InterBase Documentation

The InterBase Version 3.0 documentation set contains the following books:

Getting Started with InterBase (INT0032WW2179A) provides an overview of InterBase
components and interfaces.

Database Operations (INT0032WW2178D) describes how to use InterBase utilities to
maintain databases.

Data Definition Guide (INT0032WW2178F) describes how to create and modify
InterBase databases.

DDL Reference (INT0032WW2178E) describes the function and syntax for each of the
data definition language clauses and statements. It also lists the standard error
messages for gdef.

DSQL Programmer’s Guide (INT0032WW2179C) describes how to program with
DSQL, a capability for accepting or generating SQL statements at runtime.

Forms Guide (INT0032WW2178A) describes how to create forms using the InterBase
forms editor, fred, and how to use forms in qli and GDML applications.

Programmer’s Guide (INT0032WW21781) describes how to program with GDML, a
relational data manipulation language, and SQL, an industry standard language.

Programmer’s Reference (INT0032WW2178H) describes the function and syntax for
each of the GDML and InterBase supported SQL clauses and statements. It also
lists the standard error messages for gpre.

Qli Guide (INT0032WW2178C) describes the use of qli, the InterBase query language
interpreter that allows you to read to and write from the database using interactive
GDML or SQL statements.

Qli Reference (INT0032WW2178B) describes the function and syntax for each of the
data definition, GDML, and SQL clauses and statements that you can use in qli.

Sample Programs (INT0032WW2178G) contains sample programs that show the use
of InterBase features.

Master Index (INT0032WW2179B) contains index entries for the entire InterBase Ver-
sion 3.0 documentation set.

xiii

Xiv

Chapter 1
Introduction

This chapter provides a brief introduction to the InterBase utilities.

Overview

This book describes how to perform tasks involved with the administration and
operation of an InterBase database. InterBase does not require a database
administrator, and all of the tasks described in this book can be carried out by any
individual who is familiar with InterBase.

Database administration and operations involves doing the following tasks:

¢ Backup and recovery

¢ Routine database maintenance

* Preparation for disaster recovery using after-image journaling or disk shadowing

Introduction 1-1

Overview

Figure 1-1 shows how database administration and operations can be performed inde-
pendently from your database application.

Figure 1-1. Database Administration and Operations

Journal Backup
. and
Files Recovery
Database
Disk Database
Shadow Maintenance

1-2 Introduction

InterBase Utilities

InterBase Utilities

InterBase provides the following utilities to perform database administration and
operations:

gbak, the backup and restore utility

gcon, the console program used in communicating with the journal server
gcesu, the central servers management utility

gfix, the general database maintenance utility

gltj, the journal server utility

grst, the journal file restoration utility

Introduction 1-3

For More Information

For More Information

For more information on:

* gbak, see Chapter 2, Database Backup and Recovery

e gfix, see Chapter 3, Database Maintenance

* Journaling, grst, gcon, and gltj, see Chapter 4, Journaling
* Disk shadowing, see Chapter 5, Disk Shadowing

For more information on each utility’s syntax and the options, see the entry for that
utility in Chapter 6, Database Operations Reference.

1-4 Introduction

Chapter 2
Database Backup and Recovery

This chapter describes gbak, the utility used for backing up and restoring InterBase
databases.

Overview

You should back up your databases on a regular basis, either to a removable medium
or to another device. That way, in the event your drive ever crashes, your work up to
the last backup is protected. You should also consider storing your backup medium off
premises.

InterBase provides a backup and restore utility, gbak, for performing these tasks.
ghbak allows you to:

¢ Backup a database

¢ Backup a database in a generic (XDR) format

¢ Restore a database

e Transfer databases between different machine types

Database Backup and Recovery 2-1

Overview

Reconstruct databases restored from the after-image journal

Change the size of database pages from the default of 1024 bytes up to 8192 bytes
Change the database from a single-file to a multiple-file database

Eliminate obsolete versions of a database record

Balance indexes

Correct selectivity on non-unique indexes

Convert databases from one on-disk structure (ODS) to another

The following sections discuss these uses.

2-2

Database Backup and Recovery

Choosing a Backup and Restore Utility

Choosing a Backup and Restore Utility

InterBase allows two different methods for backing up and restoring database files:
* gbak, a database-specific backup and restore utility.

* Your operating system’s backup and restore utility. These utilities include: BACK-
UP on VMS systems, tar on UNIX systems, and WBAK on Apollo systems.

The advantages of each are discussed below.

The gbak Utility

gbak offers the following advantages:

® Backups can run concurrently with other users. gbak does not require exclusive
access the database files it is copying. You can use gbak to create a database back-
up, and then include the database backup as part of your regular system backup.

* Multi-file databases are never partially backed up. If your database spans multi-
files, gbak does not do a partial backup of your database. It either backs up all of
your database files, or none at all.

* Ability to backup and restore data from one operating system to another operating
system. gbak backs up and restores data from one operating system to another
with or without a network connection. It automatically translates the data from
one operating system to another operating system.

e Improves database performance. gbak can improve your database performance,
because it improves the locality of reference, record density, and index balance. In
addition, you can use gbak to change the database page size from the default of
1024 bytes up to 8192 bytes, or to split a single-file database into a multi-file da-
tabase.

Your Operating System Utility

Your operating system backup and restore utility offers only one advantage over
gbak—backups are usually faster.

Database Backup and Recovery 2-3

Backing Up a Database

Backing Up a Database

gbak lets you backup and restore data from one operating system to another. You can
backup the database file onto a cartridge tape, a magnetic tape, or directly onto a
device. The device can be either local or remote.

Note

Backing up onto cartridge tape and magnetic tape is supported on
Apollo and UNIX systems.

Backing up and restoring a database from one operating system to another requires a
usually requires network connection between the two machines, unless you use the
gbak’s transportable option. The InterBase access method takes care of incompati-
bilities in storage formats between the two operating systems.

If you do not have a network connection between the two machines you want to back
up and restore a database on, you can build a generic backup using gbak ’s transport-
able option. Transportable gbak is discussed later in this chapter.

The following sections provide examples of backing up a database on a local or a remote
device onto different types of media.

Backing Up a Database to Tape

The following command uses gbak to back up a database to a file on another device:

o/s Command

Apollo AEGIS % gbak atlas.gdb atlas_01_march.gbak -b
UNIX % gbak -b atlas.gdb atlas_01_march.gbak
VMS $ gbak/backup atlas.gdb atlas_01_march.gbak

The following example shows how to backup the sample database on an Apollo system
onto a local cartridge tape or magnetic tape:

0O/S Command
Apollo AEGIS % gbak atlas.gdb -b -dev ct

2-4 Database Backup and Recovery

Backing Up a Database

If you do not specify a device, gbak defaults to a magnetic tape.

The following example backs up only the data definition. You specify this option if you
want an empty version of an existing database:

o/s Command

Apollo AEGIS % gbak atlas.gdb atlas_01_march.gbak -b -m

UNIX % gbak -b -m atlas.gdb atlas_01_march.gbak

VMS $ gbak/backup/metadata atlas.gdb atlas_01_mar.gbak

Backing Up a Database in Generic Format

If you do not have a network connection between the two machines, and you want to
backup a database on one type of machine and restore it on another type of machine,
you can use the transportable option. This option writes data in a generic (XDR) for-
mat, which can be restored on any type of machine.

When you use the transportable option, you should consider the way in which the
machines you are backing up and restoring the database on handle security. If you are
not restricted by security, you must change the database security after you restore it,
so it corresponds to the security scheme on the new machine.

The following example writes the data from the atlas database on an Apollo in generic
format without the database’s security:

% gbak -t /interbase/examples/atlas.gdb atlas_t.gbak
The atlas_t.gbak file can be restored onto another machine with an incompatible stor-
age format:

% gbak -c atlas_t.gbak new_atlas.gdb

- Backing Up a Database on a Remote System

If you are using InterBase in a heterogeneous environment, you can use gbak to move
a database or just the data definition from SUN to VMS, ULTRIX, HP, or Apollo.
InterBase provides full read-write access to databases in a heterogeneous network of
VAXes, SUNs, Apollos, and HPs. You might move a database onto another machine,
rather than access it remotely in order to:

e Have access to larger and faster disks

¢ Put the database on the machine where it is used most frequently

Database Backup and Recovery 2-5

Backing Up a Database

Table 2-1 lists how to access a remote database.

Table 2-1. Remote Database Access

From To Syntax

VMS VMS via DECnet node-name::filespec
VMS ULTRIX via DECnet node-name::filespec
VMS non-VMS and non-ULTRIX node-name”filespec
ULTRIX VMS via DECnet node-name::filespec
Apollo Apollo //node-name/filespec
Everything Else Whatever is left node-name:filespec

Note

If you are running on a UNIX system, you must enclose the remote
database name in single quotes.

The following example, run on a MicroVAX with ULTRIX-32m, backs up a database on
an Apollo workstation to a file on the MicroVAX, and restores the database for use on
the MicroVAX:

$ gbak apollo:/interbase/examples/atlas.gdb atlas.gbak
$ gbak -r atlas.gbak atlas.gdb

The database is now ready to use on the MicroVAX:

$ gli

Welcome to QLI

Query Language Interpreter
QLI> ready atlas.gdb

QLI> exit
$

If you want to copy the data definition for the database without the data, you can use
gbak’s metadata switch. The following example backs up and restores the metadata
for the atlas database:

$ gbak -m apollo:/interbase/examples/atlas.gdb atlas.gbak
S gbak -r atlas.gbak atlas.gdb

2-6 Database Backup and Recovery

Restoring a Database

Restoring a Database

gbak restores databases from backup copies. The following command restores the
database from the backup copy, creating a new database file:

0/s Command

Apollo AEGIS % gbak atlas_01_march.gbak atlas.gdb -c¢
UNIX % gbak -c atlas_01_march.gbak atlas.gdb
VMS $ gbak/create atlas_01_march.gbak atlas.gdb

The create option restores a database from the backup file to a new file. If the file
new_atlas.gdb already exists on:

e VMS, a new version of the file is created
* UNIX and Apollo systems, the restoration fails because gbak only overwrites
existing files if you use the replace switch

To view a description of what happens during a backup or restoration, you can include
the verify option. This switch provides detailed information about the operation:

o/s Command

Apollo AEGIS % gbak atlas.gdb atlas.gbak -c -v
UNIX % gbak -c -v atlas.gdb atlas.gbak

VMS $ gbak/create/verify atlas.gdb atlas.gbak

readied database atlas.gdb for backup
creating file atlas.gbak
starting transaction
writing global fields
writing global field STATE
writing global field POPULATION

writing relations
writing relation STATES
writing field STATEHOOD
writing field AREA

U

Database Backup and Recovery 2-7

Restoring a Database

writing data for relation CANADIAN_TOURISM
12 records written

writing data for relation PROVINCES

12 records written

U

closing file, committing, and finishing

The following example restores a database without its validity conditions. You use the
no_validity option if you want to restore a database without valid_if clauses:

o/s Command

Apollo AEGIS % gbak atlas.gdb new_atlas.gbak -b -n

UNIX % gbak -b -n atlas.gdb new_atlas.gbhak

VMS $ gbak/backup/no_validity atlas.gdb new_atlas.gbak

Note

When you back up a database that includes fields which are comput-
ed or validated through user defined functions (UDFs), you must
have the UDF function library available when you restore the back-
up. During a restore, function libraries are needed to validate meta-
data.

If a required function library is not available, you will get an error
message when you attempt to restore the data. If the source of the
problem is not clear, rerun the gbak restore with the -o and -v op-
tions, which provide more information. A database recreated with
the -0 option includes an RDB$FUNCTIONS relation. RDB$FUNC-
TIONS contains the library name for each function.

2-8 Database Backup and Recovery

Changing Database Characteristics

Changing Database Characteristics

You can use gbak to change the following database characteristics:
¢ Database page size
* Single-file database into a multiple-file database

Each of these is discussed in this section.

Changing the Database Page Size

You may want to try to improve performance by changing the page size of a database.
Each InterBase index bucket is one database page long. Making longer database pages
mean larger buckets and fewer levels in the hierarchy.

You can use ghak to change the default database page size from 1024 bytes. Interbase
supports database page sizes of 1024, 2048, 4096, and 8192. When determining what
size database page you should choose for your application, consider the following guide-
lines:

* Blob storage and retrieval is most efficient when the entire blob fits on a single
page. If the application stores blobs between 1K and 2K, using a database page
size of 2K reduces blob access time. If your application has an occasional blob of
2K, you should not increase the database page size.

¢ InterBase performs better if each record fits on a page. Calculating the amount of
space used on a page depends on the amount of compression that can be performed
on the record. A database containing long records with non-repetitive data per-
forms better with a larger page size.

¢ Index performance improves if the depth of the index is kept to a minimum. Dou-
bling the database page size doubles the number of nodes the first level of the in-
dex points to, thus doubling the scope of the second level.

The following examples change the default database page size from 1024 pages to 2048
pages:
1. Backup your database without specifying the page_size option. For example:

0/S Command

Apollo AEGIS % gbak atlas.gdb atlas_01_march.gbak -b
UNIX % gbak -b atlas.gdb atlas_01_march.gbak
VMS $ gbak/backup atlas.gdb atlas_01_march.gbak

Database Backup and Recovery 2-9

Changing Database Characteristics

2. Restore your database using the page_size option. For example:

o/s Command

Apollo AEGIS % gbak atlas.gbak new_atlas.gdb -r -p 2048

UNIX % gbak -r -p 2048 atlas.gbak new_atlas.gdb

VMS $ gbak/replace/page_size 2048 atlas.gbak new_atlas.gdb

Your database now has a 2048 page size.

Converting a Single-File Database to a Multiple-File
Database

You can change a database from a single-file database to a multiple-file database with
gbak. By default, InterBase stores and backs up databases into a single-file database.
If your database grows to a very large size, you may want to split the database up into
multiple database files. When using gbak to restore your database into multiple-files,
be sure you specify a pathname for each file.

The following example restores a single-file database into a multiple-file database:

0o/S Command

Apollo AEGIS % gbak atlas.gbak atlas.gdb 100 atlasl.gdb -r

UNIX % gbak -r atlas.gbak atlas.gdb length 100 atlasl.gdb
VMS $ gbak/replace atlas.gbak atlas.gd 100 atlas1.gdb

You can also use the define database and modify database statements to create a
multiple-file database. For more information on these statements, see the DDL Refer-
ence.

2-10 Database Backup and Recovery

Changing the On Disk Structure

Changing the On Disk Structure

You can use gbak to convert from one on disk structure (ODS) to another. This is only
necessary if InterBase changes the on disk structure. When InterBase changes the on
disk structure, we ship a special image called the bridge. This image can read Version
2.n and Version 3.0 databases.

Note

If you are upgrading from Version 2.n to Version 3.0, you must use
gbak to convert to the new on disk structure to take advantage of
the new Version 3.0 features.

To convert to the new on disk structure:

1. Backup your current database using gbak. For example:

0o/S Command

Apollo AEGIS % gbak atlas.gdb v2_atlas.gbak -b
UNIX % gbak -b atlas.gdb v2_atlas.gbak
VMS $ gbak/backup atlas.gdb v2_atlas.gbak

2. Restore your database using gbak. For example:

O/S Command

Apollo AEGIS % gbak v2_atlas.gbak v3_atlas.gdb -c
UNIX % gbak -c v2_atlas.gbak v3_atlas.gdb
VMS $ gbak/create v2_atlas.gbak v3_atlas.gdb

For more information on converting to the new ODS, see your platform-specific
installation instructions.

Database Backup and Recovery 2-11

For More Information

For More Information

For more information on gbak’s syntax and options, see the entry on gbak in Chapter
6, Database Operations Reference.

For more information on creating and modifying a database, see the chapter on
creating a database in the Data Definition Guide.

For more information on the define database and modify database statements, see
the entries for these statements in the DDL Reference.

2-12 Database Backup and Recovery

Chapter 3
Database Maintenance

This chapter describes gfix, the InterBase utility used for minor system maintenance.

Overview

Occasionally a database incurs minor damage from a disk controller or an operating
system write error. Such an error might result in a “broken” or “lost” data structure,
such as a database page or index.

gfix is the system utility that fixes minor database problems such as these. In addition,
gfix:

* Sweeps a database to release storage space by cleaning up old record versions

e Validates databases

* Enables after-image journaling

¢ Prevents limbo transactions by providing automated transaction recovery

Each of these topics is discussed in the following sections.

Database Maintenance 3-1

Sweeping a Database

Sweeping a Database

You can use gfix to sweep a database without taking the database offline. When gfix
sweeps a database it cleans up old record versions. This is called, garbage collection.

Although the InterBase access method automatically performs some garbage collection
when it visits a record, it does not necessarily release all the space associated with the
removed record version. gfix visits all records in a relation and releases space held by:

e Records that were rolled back

¢ QOut of date record versions

You can release space held by records that were rolled back or by out of date record ver-
sions by using either the housekeeping option or the sweep option.

The gfix housekeeping option lets you set the automatic sweep interval to any non-
negative integer. Currently, the access method automatically sweeps a database every
20,000 transactions. You may want to change the sweep interval to be smaller or
larger, depending on how often you want to clean up old record version. To disable this
option, use gfix to set the sweep interval to 0.

If you want to sweep a database immediately, you can use the gfix sweep option.

The following command sweeps a database for old records every 10,000 transactions.
Because you can sweep a database without taking it offline, you can run gfix in the
background at a low priority:

0o/s Command

Apollo AEGIS % gfix atlas.gdb -h 10000

UNIX % gfix -h 10000 atlas.gdb

VMS $ gfix/housekeeping 10000 atlas.gdb

3-2 Database Maintenance

Validating a Database

Validating a Database

You can use gfix to validate your database structures to verify their integrity. To do
this, you use the gfix -validate option. This option:

* Requires exclusive access to the database
* Frees up pages that have been assigned to any database structure, but not used
* Provides options for repairing a corrupt database:

— full, verifies record and page structures, releasing record fragments not cur-
rently assigned to current structures '

— no_update, validates and reports corrupt and misallocated database struc-
tures, but does not fix them

— mend, marks records as corrupt structures

Some of the errors gfix finds with the validate option are normal ones that can occur
if a program aborts. When a program aborts, no committed data is lost and uncommit-
ted updates are rolled back. However, the InterBase access method may have assigned
a page from free space for the records. The validate option reports such pages as
orphan pages and assigns them to free space.

The following example uses the validate and full options:

0/S Command

Apollo AEGIS % gfix atlas.gdb -v -f

UNIX % gfix -v -f atlas.gdb

VMS $ gfix/validate/full atlas.gdb
The validate option also locates problems caused by write errors in the operating sys-
tem or hardware. These errors can make committed data unrecoverable and cannot be
corrected with the validate option. Use gfix’s mend option to correct such errors. This

option marks records as corrupt structures, thus causing the access method to skip
them.

Database Maintenance 3-3

Validating a Database

Repairing a Corrupt Database

Follow the procedure described below if you suspect that you have a corrupt database:

1. Make a copy of the database with an operating system utility. Do not use gbak.
For example:

o/s Command

Apollo AEGIS % cpf atlas.gdb broken_atlas.gdb
UNIX % cp atlas.gdb broken_atlas.gdb
VMS $ copy atlas.gdb broken_atlas.gdb

2. Run gfix -mend on the copy of your database. gfix reports the errors it finds. For

example:

o/S Command

Apollo AEGIS % gfix broken_atlas.gdb -m
UNIX % gfix -m broken_atlas.gdb
VMS $ gfix/mend broken_atlas.gdb

3. Run gfix -validate to see if errors gfix reported were fixed. For example:

0/S Command
Apollo AEGIS % gfix broken_atlas.gdb -v
UNIX % gfix -v broken_atlas.gdb

VMS $ gfix/validate broken_atlas.gdb

3-4 Database Maintenance

Validating a Database

4, Run gbak to backup the mended database. For example:

o/s Command

Apollo AEGIS % gbak broken_atlas.gdb broken_atlas.gbak -b
UNIX % gbak -b broken_atlas.gdb broken_atlas.gbak
VMS $ gbak/backup broken_atlas.gdb broken_atlas.gbak

5. Run gbak to restore the database. This rebuilds the indexes and other database
structures. For example:

0/S Command

Apollo AEGIS % gbak broken_atlas.gbak new_atlas.gdb -r
UNIX % gbak -r broken_atlas.gbak new_atlas.gdb
VMS $ gbak/create broken_atlas.gbak new_atlas.gdb

There are some types of database corruption gfix cannot fix. If you encounter a corrupt
database and gfix is unable to repair it, send the copy of the pre-gfix database you
made in Step 1 to:

Borland International Inc.
InterBase Support

1800 Green Hills Road

P. 0. 660001

Scotts Valley, CA 95067

You can also call Customer Support at 800-437-7367 from anywhere in the United
States and Canada or at 408-431-5400 from outside of the United States. In addition,
you can fax a description of the problem to 408-439-7808.

Database Maintenance 3-5

Enabling After-Image Journaling

Enabling After-image Journaling

You can use gfix to enable after-image journaling for a database. The following exam-
ple enables journaling for the atlas database.

Note

This example assumes you have set up a journal directory, created
the journal database, and started the journal server.

o/s Command

Apollo AEGIS % gfix atlas.gdb -e
UNIX % gfix -e atlas.gdb
VMS $ gfix/enable atlas.gdb

3-6 Database Maintenance

Automating Transaction Recovery

Automating Transaction Recovery

To understand how to use gfix for automated transaction recovery, you must first
understand the InterBase two-phase commit process. This process is described below,
followed by an overview of automated transaction recovery.

The Two-Phase Commit Process

The two-phase commit process occurs for transactions that span multiple databases.
This process virtually guarantees that unless there is a catastrophic event, updates to
multiple databases within a single transaction happen either in parallel or not at all.
When a user commits a multiple database transaction, InterBase performs a two-
phase commit automatically.

The two-phase commit works the following way:

¢ Inphase 1, InterBase prepares each database for the commit. This involves com-
pleting each subtransaction by writing the changes to disk. A subtransaction is
the component of a multi-database transaction that involves a single database.

* Inphase 2, InterBase marks each subtransaction as committed. It marks them in
the same order in which they were prepared.

If there is a network failure, disk crash, or other catastrophic event that makes one or
more databases unavailable during the two-phase commit process, the commit will fail.
If this happens during phase 2 of the commit process, some of the subtransactions will
be committed and others will not.

Understanding Automated Transaction Recovery

gfix provides an automated method for recovering from the failure of a two-phase com-
mit. This utility reconnects all subtransactions, analyzes their state, provides advice,
and does a commit or rollback, as requested.

gfix analyzes the state of the subtransactions by figuring out when the two-phase com-
mit failed:

* Ifthe first transactions are in limbo and later transactions are not, gfix assumes
that the prepare phase did not complete. In this case, gfix advises you to do a roll-
back.

e Ifthe first transactions are missing and later transactions are in limbo, gfix as-
sumes that the prepare phase completed and the commit phase did not. In this
case, gfix advises you to commit the transaction.

Database Maintenance 3-7

Automating Transaction Recovery

e Ifall transactions are prepared, gfix assumes that the failure occurred between
phase 1 and phase 2 of the two-phase commit process. In this case, the gfix users
must decide whether to commit or roll back the transaction.

Using gfix to Recover Transactions

Use gfix to recover from the failure of a two-phase commit. Several of gfix’s options
have been extended in Version 3.0 to include multiple database functionality. Table 3-
1 describes these options and the new two_phase option.

Table 3-1. gfix Options for Two-Phase Commit

Option Meaning

list Prints all transactions in limbo, the partner, the cur-
rent state, and action automated transaction would
take for multi-database transactions.

prompt Prompts the user for advice on how to complete the
two-phase commit process.

commit Commits all transactions and the partners of the
transaction. gfix advises against a commit if some of
the transactions were not prepared.

rollback Rolls back all transactions and the partners of the
transaction
two-phase Depending on the state of the transaction, gfix com-

mits or rolls back the transaction to preserve the two-
phase commit.

This option prompts you for advice if all transactions
are prepared and you did not specify a commit or a
rollback

To recover from a catastrophic event using automatic transaction recovery, invoke gfix
with the -two_phase and -list options. gfix prints the current state of the transactions
and their partners and does an automatic commit or rollback.

3-8 Database Maintenance

Automating Transaction Recovery

Automated Transaction Recovery Restrictions

Automated transaction recovery can only be used against transactions prepared by
InterBase in the course of a commit. A user-defined two-phase commit using a separate
prepare statement cannot use automated transaction recovery. If you want to use
your own two-phase recovery, you can still use gfix to recover transactions in limbo.
However, these transactions are treated as a single database transaction, and each
transaction has to be manually recovered.

Database Maintenance 3-9

For More Information

For More Information

For more information on gfix’s syntax and options, see the entry on gfix in Chapter 6,
Database Operations Reference.

If you find that gfix is not suited to your application, you can write a routine or your
own utility. gfix calls the following gds routines for most of its functions:

¢ gds_S$attach_database to attach the database. Options on the call provide the
verify, sweep, and mend functions.

¢ gds_$transaction_info to execute the listing option.

¢ gds_$reconnect_transaction to execute the commit and rollback options.

See the OSRI Guide for more information about using these routines.

3-10 Database Maintenance

Chapter 4
Journaling

This chapter describes after-image journaling on UNIX and VMS systems.

Overview

After-image journaling or long-term journaling allows for the recovery of data in the
event the original database file becomes unreadable. After-image journaling is an
optional part of InterBase. Once you enable journaling, changes to the database are
automatically written to a journal file. The journal file can be located on tape or disk,
depending on the type of system.

InterBase supports journaling on Apollo, UNIX, and VMS systems. Apollo and UNIX
support journaling to disk and VMS supports journaling to tape. When you journal to
a disk, be aware of the following guidelines on each of the hardware platforms:

Journaling 4-1

Overview

Apollo supports journaling to any disk on the ring.

Sun supports journaling on machines running the same version of SunOS and of
the same architecture type. You cannot journal across different architectures or
different versions of SunOS.

UNIX supports journaling to any NFS mounted disk.

VMS supports journaling on any disk in a cluster. You cannot journal over DEC-
net.

Components of Journaling

After-image journaling has the following components:

gltj, the journal server that starts and controls journaling. You can run this server
as a detached background process.

Gcon, the utility that connects to the journal server (gltj). It allows you to modify
journaling status. Gcon is supported only on UNIX.

Gfix, the means by which you enable and disable journaling for a particular data-
base and its journal directory.

A journal database, journal.gdb, maintained by gltj. It contains the names of da-
tabases for which journaling is enabled and the names of the files to which journal
records are written.

Permanent journal files that record database changes. These files can be located
on disk or tape. For each journal directory there is only one active permanent jour-
nal file. Other journal files can be queued and started automatically when the cur-
rent one is closed.

grst, the database restore utility that restores journal files.

A journal directory, containing the journal.gdb database and the intermediate
journal file interbas.jrn. The interbas.jrn journal file is only used on VMS systems.
This directory should be on a different device from the database to avoid a simul-
taneous loss of the intermediate journal and the database.

Interbas.jrn, the intermediate journal file. When programs update journaled da-
tabases, their changes are automatically written to this file. gltj monitors inter-
bas.jrn and writes blocks of changes made to that file to the permanent journal
files. The interbase.jrn file is used only in VMS journaling.

Journaling

Overview

The following figures diagram after-image journaling components. Figure 4-1 dia-
grams journaling on UNIX systems, and Figure 4-2 diagrams journaling on VMS sys-
tems.

Figure 4-1. UNIX Journaling Diagram

Gcon
) Journal
Original - gltj Files
Database
Journal "
Database grs Restored
ghak Database

Figure 4-2. VMS Journaling Diagram

- Interbas. J our{lal
Original jrm . Files
Journal ghak
Restored
Database gbak Database

There are several steps involved in starting, enabling, and disabling journaling UNIX
and VMS systems. These steps are described later in this chapter.

Journaling 4-3

Using Journaling for Disaster Recovery

Using Journaling for Disaster Recovery

InterBase provides after-image journaling as one means of disaster recovery. After-
image journaling has some advantages and disadvantages.
The advantages of after-image journaling are:

* Recovery from user media errors. You can recover a database saved at a previous
time to a journal file.

* Less online storage space.
Journaling has a few disadvantages. When considering journaling as the method for
disaster recovery you should consider the following disadvantages:

e Journal files can grow indefinitely. This requires an operator to archive these files
on removable storage.

e Starting journaling requires exclusive access to the database.

* Recovering from a disaster using journal files requires rebuilding the database.
This can be time consuming.

* Journaling requires an extra process to start and manage the journal server.
* Setting up and monitoring journaling is a moderately complex process.

e Ifthe current journal file fills up, users hang until another journal file is made
available.

4-4 Journaling

UNIX Journaling

UNIX Journaling

The next several sections describe how to start, enable, and disable journaling, and
how to restore a database from an after-image journal file on Apollo AEGIS, Apollo
DOMAIN, and UNIX systems.

Note

If you use an Apollo AEGIS shell, use the AEGIS syntax for entering
the after-image journaling commands, otherwise use the UNIX syn-
tax.

Starting UNIX Journaling

Before you can enable journaling for a database, you must:
¢ Set up the journal directory

* Create the journal database

e Start the journal server, gltj

You can start gltj as a separate background process. Once you start gltj, it
remains available until the process dies or the system crashes. You can also start
the journal server in a system startup file.

Note

You can run the journal server in a window. To do this, use the gltj
-debug command. The -debug option signals to the gltj process it
is running in a window.

When you start the journal server, it automatically creates two files, console.addr and
Journal.addr, for establishing TCP/IP connections. It also automatically creates a jour-
nal.log file. This file keeps a log of the messages sent to gltj from standard output and
standard error.

To set up your journal directory, start gltj:

1. Create a journal directory and change to that directory. The following command
creates a journal directory, and makes it the default directory

0/s Command

Apollo AEGIS % crd /usr/journal
% wd /usr/journal

Journaling 4-5

UNIX Journaling

0/S Command

UNIX % mkdir /usr/journal
% cd /usr/journal

Create a journal database in the journal directory. The installation procedure
leaves a backup copy of the journal database in /interbase/com /journal.gbak on
Apollo systems and in /usr/interbase/bin /journal.gbak on UNIX systems. The
following command uses gbak to create a journal.gdb database:

0o/s Command
Apollo AEGIS % gbak /interbase/com/journal.gbak journal.gdb -c
UNIX % gbak -c /usr/interbase/bin/journal.gbak journal.gdb

Start gltj as a background process and pipe its output to a file. The following com-
mand starts the journal server in a C shell as a background process:

% gltj &
[1] 346

If you want to verify that the journal server process is running, use the UNIX com-
mand ps -ax if you are using Berkeley UNIX. Use the UNIX ps -e command if you
are using System V UNIX. For example:

% ps -ax
3976 ttyp2 0:00 gltj

Invoke gcon and queue one or more journal files. Note that gcon uses gltj> as its
prompt. The following example queues two journal files:

$gcon

08:25:47 03/01/90 Console connected
Journaling disabled; no output file
gltj> queue journ.a

gltj> gueue journ.b

Check the status of journaling:

gltj> status
Journaling enabled; current output file: journ.a
Output files gueued:
journ.b
glti>

Journaling

UNIX Journaling

6. Exit from gcon:

gltj> exit

s

The following section explains how to enable after-image journaling.

Enabling UNIX After-image Journaling

When you enable journaling for a database, InterBase automatically backs up the data-
base into the journal files. This way you do not have to perform a separate backup or
locate the right backup when you need to recover the database.

To enable journaling on UNIX:

1. Use gfix to enable journaling for a database. Enable the journaling in the same
directory you started gltj from. Enabling journaling requires exclusive access to
the database. If users are active on the database, the gfix command does not com-
plete until the other users exit from the database. The following command enables
journaling for the atlas.gdb database:

0/S Command

Apollo AEGIS % gfix /interbase/journal_dir atlas.gdb -enable
UNIX % gfix -enable /usr/interbase/journal_dir atlas.gdb

2. Invoke gcon and check the status of journaling:

% gcon
08:25:47 03/01/90 Console connected
Journaling enabled; current output file: journ.a
Output files queued:
journ.b
Known databases and connections:
/usr/interbase/journal.dir/atlas.gdb (1), connections: 0
gltj>

Once you enable journaling, InterBase tries to establish a connection to gltj, the jour-
nal server. You must keep gltj running as long as you want to journal changes to the

database. If the gltj process dies or the system crashes, you have to restart it as a sep-
arate background process. Otherwise, the process returns an error whenever someone
tries to attach a database it is journaling.

Journaling 4-7

UNIX Journaling

Communicating with the Journal Server

At any point after you have enabled after-image journaling, you may want to check on
its status. To do this, use the gcon console program utility. It allows you to communi-
cate directly with the journal server process.

Although you can have multiple gcon processes running and communicating with the
journal server, it is not recommended. Like the journal server, gcon must be started
from the same directory as the journal files.

Note

If you are running journaling in a network, you can rlogin to the
journal directory on UNIX systems, or you can use the set host com-
mand on VMS systems.

Table 4-1 lists gcon’s options and their meanings.

Table 4-1. Geon’s Options and Their Meanings

Option Meaning

queue Queues a file or device for journaling

close Closes the current journal file or device

status Displays the information about the journal server process
shutdown Shuts down the journal server process

suspend Interrupts journaling

resume Continues journaling after it has been suspended

help Displays online help for gcon

version Displays the software version number

exit Exits from the gcon utility

Disabling UNIX Journaling

When you disable journaling for a database, the journal server must be running. If you
try to disable a journal database and the journal server is not running, gfix returns an
error message and does not disable journaling.

4-8 Journaling

UNIX Journaling

To disable journaling on UNIX:

1.

Use gfix to disable journaling for a database. The following command disables
journaling for the atlas.gdb database:

0/S Command

Apollo AEGIS % gfix /interbase/atlas.gdb -disable
UNIX % gfix -disable /usr/interbase/atlas.gdb

Check the status of journaling:

% gcon -
08:25:47 03/01/90 Console connected
Journaling disabled; current output file: journ.a
Output files queued:
journ.b
Known databases and connections:
/usr/interbase/journal.dir/atlas.gdb (1), connections: 0
glti>

After you disable journaling for a database, the journal process remains known to
the journal server.

Stopping and Restarting UNIX Journaling

To stop after-image journaling, use the gcon shutdown command. This command
shuts down the journal server process.

To restart journaling, re-invoke the journal server from the same directory you stopped
journaling in. Use the gcon resume command to resume after-image journaling.

To stop and restart UNIX journaling:

1.

Invoke gcon and shut down the journal server process. For example:

% gcon
gltj> shutdown

Restart the journal server process'. For example:
% gltj &
(

Journaling 4-9

UNIX Journaling

Invoke gcon and resume journaling. For example:

% gcon

Journal server console program

Journaling disabled; no output file

Known databases and connections:
/usr/interbase/journal.dir/atlas.gdb (2), connections: 0

gltj> resume

Exit from gcon.

Changing a Journal File

Occasionally, you may need to close one permanent journal file and open another one.

To change to another journal file:

1.

Invoke gcon and queue a new permanent journal file. For example:

Q

% gcon
gltj> queue journ.c

gltj>

Close the current permanent journal file. If another journal file is queued, gltj
opens the next file. For example:

gltj> close
glti>

Exit from gcon.

Using Journaling to Recover From a Disaster

If the database you are journaling becomes unusable due to a system disaster (i.e. a
disk crash, a network failure) or a human error, you can restore it and all of the com-
mitted changes made up to the point the disaster occurred.

The following sections describe how to recover from a system disaster and how to
recover from a human error.

4-10

Journaling

UNIX Journaling

Recovering from a System Disaster

If your system crashes, you can restore a database from an after-image file following
these steps:

1.

After your system has crashed, restart the journal server process, close the cur-
rent journal file, check that an output file is queued, and resume journaling. For
example:

ggcon
gltj> Journal server console program
Journaling disabled; current output file: journ.a
Output files queued:
journ.b
Known databases and connections:
/usr/interbase/journal.dir/atlas.gdb (1), connections: O
gltj> close
gltj> gueue journ.c
gltj> resume
gltj>

Validate the journaled databases by using the gfix validate command. If gfix
does not return any errors, then your databases are safe to use. If gfix does return
errors, continue with this recovery procedure. For example:

o/S Command

Apollo AEGIS % gfix atlas.gdb -validate -full
UNIX % gfix -validate -full atlas.gdb

If you need to recover more than one database, use qli to verify the names and or-
der of the journal files.

Q

% gli

Welcome to QLI

Query Language Interpreter

QLI> ready journal.gdb

print sequence, date_opened, status, filename of journal_files

Journaling 4-11

UNIX Journaling

DATE
SEQUENCE OPENED STATUS FILENAME
1 03-Mar-1990 closed /journal.dir/journ.a
2 03-Mar-1990 active /journal.dir/journ.b
3 03-Mar-1990 queued /journal.dir/journ.c

QLI> exit

Invoke the grst utility. grst prompts you for the names of the permanent journal
files. Enter the names of the journal files you want to recover. Press Control-D
when you want to exit from grst. Do not enter the name of the permanent journal
file activated after the system crash. This file does not contain any journal data,
and it is locked against your use.

Backup and restore the database created by grst. This step is necessary for
rebuilding all internal structures. InterBase does not journal changes to indexes.
Réstoring the database restores the indexes. For example:

0/s Command

Apollo AEGIS % gbak atlas.gdb atlas.gbak
% gbak atlas.gbak new_atlas.gdb -create

UNIX % gbak atlas.gdb atlas.gbak
% ghak -create atlas.gbak new_atlas.gdb

Recovering from a Human Disaster

If you want to restore your journal files to a specific time and date before a disaster
occurred, use the grst -u “date timestamp” command. For example, suppose a user
inadvertently corrupts the database on Friday around 2:00. You can use the grst -u
“date timestamp” command to restore your journal files just prior to the time the cor-
ruption occurred.

To restore your journal files to a specific time and date:

1.

4-12

As soon as the problem is discovered, invoke geon to close the current journal file.
For example:

Q

% gcon
gltj> close
gltj>

Invoke the grst utility and use the -u “date timestamp” option to restore your
database up to the time just before the disaster occurred. When specifying the

Journaling

UNIX Journaling

date, use the DD-MMM-YY format. When specifying the time, use the HH:MM:SS
format. If you do not specify the time, grst defaults to the beginning of the day
you specified. Be sure to enclose the date and timestamp in quotes.

When grst prompts you for the name of the journal filename, be sure to enter the
pathname and not just the name of the journal file. For example:

% grst -u “03-Mar-1990 12:10:30"

Enter journal filename: /journal.dir/journ.a

Database “/journal.dir/atlas.gdb” (1) enabled at 15:11:10
03/01/90

Recover it? [y/n]:y

Enter journal filename: /journal.dir/journ.b

Database “/journal.dir/atlas.gdb” (1) enabled at 15:12:10
03/01/90

Recover 1it? [y/n]:y

Enter journal filename: (Press Control-D to exit.)
o

]

grst continues to process the journal file after the date and timestamp you en-
tered. At each commit prompt, you are asked if you want to apply the transaction
to the journal file. If you want to apply the transaction, answer yes. If you do not
want to apply the transaction, answer no.

Backup and restore the database created by grst. This step is necessary for
rebuilding all internal structures. InterBase does not journal changes to indexes.
Restoring the database restores the indexes.

0/S Command

Apollo AEGIS % gbak atlas.gdb atlas.gbak
% gbak atlas.gbak new_atlas.gdb -create

UNIX % gbak atlas.gdb atlas.gbak
% gbak -create atlas.gbak new_atlas.gdb

Journaling 4-13

VMS Journaling

VMS Journaling

The next several sections describe how to start, enable, and disable journaling, and
how to restore a database from an after-image journal file on VMS systems.

Customizing the VMS Journaling Environment

Before you begin journaling on VMS, you should decide how you want to customize
your journaling environment. You can customize the after-image journaling environ-
ment to suit your application. For example, you can choose:

4-14

One database per journal directory. By establishing one journal directory per jour-
naled database, you give each database its own set of permanent journal files. The
reduces the amount of data written to each journal file, making recovery quicker.
However, this option requires more system resources. If you write journal files di-
rectly to tape, you must have one tape drive for each journaled database.

Multiple databases per journal directory. By choosing one journal directory for
several databases, you can journal change records to a single file. This option uses
your system resources more efficiently because it writes directly to tape. However,
recovering any one database takes longer, because the journal contains records
relevant to other database.

Disk journaling. If you specify a disk file as the permanent journal file, gltj writes
the permanent journal to disk. This provides better performance than writing to
tape, but requires monitoring the size of the journal files so the journal does not
overflow a disk. Permanent journal files can be archived to tape using VMS
BACKUP or some other backup utility. If you choose to journal to disk, do not
write your journal file to the same device as your database.

Tape journaling. You can specify a tape file as the permanent journal file. This op-
tion requires dedicating a tape drive, or a set of tape drives, to database journal-

ing. It also requires having an operator available to change the tapes as necessary.
By establishing a tape volume set, you can automatically transfer from one tape

to the next.

Cluster journaling. InterBase after-image journaling works transparently on all
nodes on a cluster, although the gltj program runs only on one node in a cluster.
Applications journal their changes to the intermediate journal file even if gltj is
not available. Thus, journaling continues in a cluster even if the node running the
gltj process crashes. However, only gltj writes changes from the intermediate
journal file to the permanent journal files. If that node is unavailable for an ex-
tended period of time, some other node should start the gltj process.

Journaling

VMS Journaling

Starting VMS Journaling

To set up your journal directory and start glt;j:

1.

Create the journal directory. The following commands create a journal directory
on a disk called §jrndisk, and makes it the default directory.

$ create /dir $jrndisk:[journal]
$ set def $jrndisk:[journall

Create a journal database in the journal directory. The InterBase installation pro-
cedure leaves a backup copy of the journal database in the sys$library directory.
The following command uses gbak to create a journal.gdb database:

S gbak /create sysSlibrary:journal.gbak journal.gdb

Run the journal server:

$ glt]

> status

18:6:41 03/01/90 Journal server started
Journaling disabled; no output file suspended:
The gltj program does not prompt you for input.

Queue one or more files. In this example, the files are created on another device
called $jrndev.

> queue $jrndev:journ.a
18:6:59 03/01/90 Journal file "Sjrndev:journ.a" opened

> queue S$jrndev:journal.b

Check the status of journaling:

> status

Journaling enabled; current output file: Sjrndev:journ.a Output
files queued:
$jrndev:journ.b

The following section explains how to enable after-image journaling.

Enabling VMS After-image Journaling

When you enable journaling for a database, InterBase automatically backs up the data-
base into the journal files, so you don’t have to perform a separate backup or locate the
right backup when you need to recover the database. Once journaling is enabled for a

Journaling 4-15

VMS Journaling

database, that database cannot be changed unless the intermediate journal file is
accessible, so no intermediate changes can be lost.

To enable VMS after-image journaling:

1. Use gfix to enable journaling for the database.

$ gfix names.gdb /enable $jrndisk:[journal]

2. Check to see if gltj reports that journaling has been enabled.

$ gltj

18:43:37 03/01/90 Journaling enabled for
"SDISK1: [JONES.WORK]NAMES.GDB;1" (1)
18:43:46 03/01/90 Process sign_off for
"SDISK1: [JONES.WORK]NAMES.GDB; 1" (1)

Enabling journaling requires exclusive access to the database. If other users are active
on the database, the gfix command does not complete until the other users detach from

the database.

Monitoring Journaling Status

gltj writes a status line to the database each time a process attaches or detaches a
database. It also reports each time journaling is enabled or disabled for a database.
Each time someone attaches to the database, gltj reports the event. For example:

18:47:15 03/01/90 Process sign_on for
"SDISK1: [JONES.WORK]NAMES.GDB; 1" (1)

18:47:51 03/01/90 Process sign_on for
"SDISK1: [JONES.WORK]NAMES.GDB;1" (1)

19:4:45 03/01/90 Process sign_on for
"SDISK1: [JONES.WORK]NAMES.GDB;1" (1)

19:4:55 03/01/90 Process sign_off for
"SDISK1l: [JONES.WORK]NAMES.GDB;1" (1)

19:5:15 03/01/90 Process sign_on for
"SDISK1: [JONES.WORK]NAMES.GDB;1" (1)

19:12:46 03/01/90 Journaling enabled for
"SDISK1: [JONES.WORK]ANOTHER.GDB; 1" (2)

4-16 Journaling

VMS Journaling

19:12:49 03/01/90 Process sign_off for
"SDISK1: [JONES.WORK]ANOTHER.GDB;1" (2)

To get the current status of a database, use the status command.
Type status to get a status report from gltj:

> status
Journaling enabled; current output file: $jrndev:journ.a

Output files queued:

Sjrndev:journ.b

Known databases:
$DISK1: [JONES.WORK]ANOTHER.GDB;1 (2)
SDISK1: [JONES.WORK]NAMES.GDB;1 (1)

Changing Journal Files

Whether you choose to journal to tape or journal to disk and archive files to tape, occa-
sionally you need to close one permanent journal file and open another. The following
gltj commands allow you to change journal files, creating reliable checkpoints in the
journal.

Queue introduces a new permanent journal file.

> queue S$jrndev:journ.a
18:6:59 03/01/90 Journal file "$jrndev:journ.a" opened

> queue $jrndev:journal.b

Flush flushes all changes from the intermediate journal file to the permanent file
and suspends journaling. This is an optional step you can skip if you discover you
have run out of space for the current permanent journal file. However, you do not
have a reliable checkpoint unless you flush the intermediate file before closing the
current permanent journal file.

> flush
suspended:

Close closes the current permanent journal file. If another file is queued, gltj
opens the next file.

> close

19:39:46 03/01/90 Journal file "Sjrndev:journ.b" opened
Journaling suspended; current output file: $journdev:journ.b

Journaling 4-17

VMS Journaling

Known databases:
$SDISK1: [JONES.WORK]ANOTHER.GDB;1 (2)
SDISK1: [JONES.WORK]NAMES.GDB;1 (1)

> queue S$Sjrndev:journ.c

Resume causes gltj to resume writing changes from the intermediate journal to
the permanent journal file. This is an optional step. If you have not used the flush
command, the journal server is not suspended, and you do not need to resume.

suspended:

> resume
Journaling enabled; current output file: $jrndev:journ.b Output
files queued:
S$jrndev:journ.c
Known databases:
SDISK1: [JONES.WORK]ANOTHER.GDB;1 (2)
SDISK1: [JONES.WORK]NAMES.GDB;1 (1)

If you journal to disk, archiving files to tape with the VMS backup you can queue a
series of files on different disks. As one disk fills, close that file, archive it, delete it from
disk, and requeue the file.

If you journal to tape, you may need to suspend journaling while you change media
without changing the journal file. To suspend journaling without changing files use
these gltj commands:

4-18

Suspend causes gltj to cease writing from the intermediate journal. Changes are
still written to the intermediate journal, which eventually fills up, stopping all da-
tabase activity, unless you restart gltj.

> suspend
Journaling suspended; current output file: $jrndev:journ.b
Output files qgueued:
Sjrndev:journ.c
Known databases:
SDISK1: [JONES.WORK]ANOTHER.GDB;1 (2)
SDISK1: [JONES.WORK]NAMES.GDB;1 (1) suspended:

Resume causes gltj to resume flushing changes from the intermediate journal to
the permanent journal file.

suspended:

> resume

Journaling enabled; current output file: S$jrndev:journ.b
Output files queued:

Journaling

VMS Journaling

$jrndev:journ.c
Known databases:
SDISK1: [JONES.WORK]ANOTHER.GDB;1 (2)
SDISK1l: [JONES.WORK]NAMES.GDB;1 (1)

Disabling VMS Journaling

If you decide to discontinue journaling for a database, use the gfix/disable option.
Remember, journaling should not be casually disabled, since reenabling journaling
involves backing up the database again. You might disable journaling if you plan a
massive batch update of the database and want to restart your journal set (collection
of permanent journal files) when the update is done. You should disable and reenable
journaling periodically to limit the size of the journal set that InterBase reads to rec-
reate your database.

To disable journaling:

1.

Use gfix to disable journaling for the database. For example:
$ gfix names.gdb /disable

Check the gltj log.

19:19:35 03/01/90 Journaling disabled for
"SDISK1: [JONES.WORK]NAMES.GDB;1" (1)
19:19:36 03/01/90 Process sign_off for
"SDISK1: [JONES.WORK]NAMES.GDB;1" (1)

> status

Journaling enabled; current output file: $jrndev:journ.a Output
files queued:
Sjrndev:journ.b
Known databases:
SDISK1: [JONES.WORK]ANOTHER.GDB;1 (2)
SDISK1: [JONES.WORK]NAMES.GDB;1 (1)

Note

A database remains known to the journal server even after being
disabled.

Journaling 4-19

VMS Journaling

Stopping and Restarting Journaling

To stop InterBase after-image journaling, use the gltj commands flush and shut-
down. Flush empties the intermediate journal file and suspends journaling. Shut-
down causes the gltj program to exit. Restart journaling by reinvoking the journal
server from the same journal directory. When you restart, the journal server is sus-
pended. You should flush the journal again to be certain all data has been written to
the permanent file, then close the current journal file before resuming journaling. For
example, to stop journaling:

1. Use the flush command to flush all changes from the intermediate journal file to
the permanent file and mark the intermediate file as empty:

> flush
suspended:

2. Use the shutdown command to exit the server:

> shutdown
19:46:0 03/01/90 Journal server shutdown $
$

3. Restart the journal server. When gltj starts, it suspends itself. You should first
flush the intermediate journal, then close the current journal file. Closing the cur-
rent journal file is not necessary, but the point at which a journal server is shut
down and restarted is often a convenient checkpoint.

$ glt]

19:47:9 03/01/90 Journal server started
19:47:13 03/01/90 Journal file "$jrndev:journ.b" opened
Journaling suspended; current output file: $jrndev:journ.b
Output files queued:

Sjrndev:journ.c
Known databases:

SDISK1: [JONES.WORK]ANOTHER.GDB;1 (2)
suspended:

> flusn
suspended:

>queue Sjrndev:journ.d
close

19:47:24 03/01/90 Journal file "$jrndev:journ.c" opened
Journaling suspended; current output file: $jrndev:journ.c
Output files queued:

Sjrndev:journ.d

4-20 Journaling

VMS Journaling

Known databases:
SDISK1: [JONES.WORK]ANOTHER.GDB;1 (2)
suspended:

> resume

Journaling enabled; current output file:
$jrndev:journ.c
Output files queued:
Sjourndev:journ.d
Known databases:
SDISK1: [JONES.WORK]ANOTHER.GDB;1 (2)

> queue S$Sjrndev:journ.d

Recovering from a System Disaster

Sometimes it is not possible to close down the journal server in an orderly fashion.
Closing down the journal server with a power failure or a system crash may result in
some journal records being written from the intermediate file to the permanent journal
twice—once before the crash and once after. The recovery program recognizes this sit-
uation and compensates for it.

If you have a system crash, you should first restart gltj so any data remaining in the
intermediate journal file is flushed to the permanent journal file. Then check your
databases using the validate option of gfix. In most cases, they do not require any fur-
ther attention. Should one of the databases prove unusable, recover the database with
grst, the database recovery program. Once grst has recreated the data, backup and
restore the database with gbak to insure all internal structures have been completely
recreated.

To recover from a system crash:

1. Following the crash, restart the journal server, flush the intermediate journal file,
check that another output file is queued, close the current permanent journal file,
queue another file if necessary to keep one in the queue, and resume journaling to
avoid blocking general database use. For example:

$ glt]

19:47:9 03/01/90 Journal server started
19:47:13 03/01/90 Journal file
Sjrndev:journ.b" opened
Journaling suspended; current output file: S$jrndev:journ.b
Output files queued:
Sjrndev:journ.c

Journaling 4-21

VMS Journaling

4-22

Known databases:
SDISK1: [JONES.WORK]ANOTHER.GDB;1 (2)
suspended:

> close

19:47:24 03/01/90 Journal file "S$jrndev:journ.c" opened
Journaling suspended; current output file: $jrndev:journ.c
Known databases:

SDISK1: [JONES.WORK]ANOTHER.GDB;1 (2)
suspended:

> queue $jrndev:journ.d
> resume

Journaling enabled; current output file: $jrndev:journ.c Output
files queued:

Sjrndev:journ.d
Known databases:

SDISK1: [JONES.WORK]JANOTHER.GDB;1 (2)

Validate journaied databases. If the gfix validate command does not return any
errors, the databases are safe to use. If there are errors, continue with the recov-
ery procedure.

S gfix $diskl:[harrison.work]lnames.gdb /validate /full
$ gfix sdiskl:[harrison.work]another.gdb /validate /full

file $diskl:[harrison.work]another.gdb is not a valid database

If you need to recover one or more databases, use qli to verify the names and order
of the journal files. For example:

$ ali

Welcome to QLI

Query Language Interpreter

QLI> ready journal.gdb

QLI> print sequence, date_opened, status, filename of
journal_files

DATE
SEQUENCE OPENED STATUS FILENAME
1 24-0ct-1988 closed Sjrndev:journ.a
2 24-0ct-1988 closed Sjrndev:journ.b

Journaling

VMS Journaling

3 24-0ct-1988 active Sjrndev:journ.c
4 24-0ct-1988 queued Sjrndev:journ.d
QLI> exit

4. Invoke the recovery program, grst. grst prompts for journal file names. Each
time it encounters a record of journals being enabled for a database, it prompts to
see if that database should be recovered, and prompts for a name for the new da-
tabase. It continues to prompt for additional journal files until you respond with
Control-Z. Do not enter the name of the permanent journal file which you activat-
ed after the system crash. This file does not contain any data written before the
crash, and is locked against your use.

$ grst

Enter journal filename: S$jrndev:journ.a Database
"SDISK1: [JONES.WORK]NAMES.GDB; 1"

(1) enabled at 18:43:35 03/01/90

Recover it? [y/nl: n

Database "$SDISK1l: [JONES.WORK]ANOTHER.GDB;1"

(2) enabled at 19:12:41 03/01/90

Recover it? [y/n]l: y Enter filename for database: foo.gdb Enter
journal filename: $jrndev:journ.b Enter journal filename: Enter
journal file name to process journal, or <EOF> to finish Enter
journal filename: *EXIT*

5. Backup and restore the database created by grst to be certain all internal struc-
tures are correctly built. InterBase does not journal changes to indexes, so the da-
tabase created by grst does not perform as well as it might otherwise.

$ gbak foo!gdb foo.gbak
S gbak /create foo.gbak yet_another.gdb

Recreating a Database up to a Journal Checkpoint

Human error or other conditions might require that you recreate a database from an
earlier checkpoint. When you close one journal file and open another, you can create a
checkpoint to which you can revert.

The procedure described in the section Changing Journal Files explains how to create
a reliable checkpoint if you include the flush command described in the procedure as
Step 2.

The procedure described below shows the use of a check point to restore a database to
the state it was in shortly before an error occurred at 7:42 PM, destroying the contents
of another.gdb.

Journaling 4-23

VMS

Journaling

To recreate a journal up to a journal checkpoint:

1.

4-24

As soon as the problem is discovered, flush and close the current journal file.
> flush

suspended:
> close

19:47:24 03/01/90 Journal file "$jrndev:journ.c" opened
Journaling suspended; current output file: $jrndev:journ.c
Known databases:

SDISK1: [JONES.WORK]ANOTHER.GDB;1 (2)
suspended:

> queue Sjrndev:journ.d
> resume

Journaling enabled; current output file: $jrndev:journ.c Output
files queued:
Sjrndev:journ.d
Known databases:
SDISK1: [JONES.WORK]ANOTHER.GDB;1 (2)

The journal database contains the time as well as the date each new journal file
was opened. By using an edit string on the qli print line, you can display the
times.

$ gli
Welcome to QLI Query Language Interpreter

QLI> ready journal.gdb

QLI> print sequence, date_opened using dd-mmm-
vyyybtt:tt:tt.tt, status, filename of journal_files

DATE
SEQUENCE OPENED STATUS FILENAME=

1 24-Feb-1990 18:06:59.00 closed $jrndev:journ.a
2 24-Feb-1990 19:39:46.00 closed $jrndev:journ.b
3 24-Feb-1990 19:47:24.00 active S$jrndev:journ.c
4 24-Feb-1990 queued $jrndev:journ.d

Journaling

VMS Journaling

Invoke grst. grst prompts for journal file names. Start with the first journal file.
Each time grst encounters a record of journal being enabled for a database, it
prompts you to specify if that database should be recovered, and prompts for a
name for the new database. In the following example, the database another.gdb is
recovered. Since only the first journal file was closed before the flawed program
ran, stop recovery after reading that file.

Journaling 4-25

For More Information

For More Information

For detailed descriptions of the available options for each of the following utilities, see
the entries in Chapter 6, Database Operations Reference for:

e gcon
. gle
o gltj

. grst

4-26 Journaling

Chapter 5
Disk Shadowing

This chapter describes disk shadowing.

Overview

InterBase lets you recover from a hardware failure using disk shadowing. A disk
shadow is a physical copy of a database stored in the same format as a database. A disk
shadow consisting of more than one file is called a shadow set. Once enabled, a shadow
maintains a duplicate copy of a database that is always in sync with the database it is
shadowing. If the shadowed database is lost as the result of a hardware failure, simply
activate the shadow and begin using it as a database.

Disk Shadowing 5-1

Overview

Components of Disk Shadowing

Disk shadowing has the following components:

e RDBS$FILES system relation. This system relation lists the shadow files for a
database.

e Ashadow. A shadow is an InterBase database that contains the same information
as the database it is shadowing. You can define multiple shadows for a database.

e A database. This is the database that you want to shadow.

Figure 5-1 diagrams the components of disk shadowing.
Figure 5-1. Disk Shadowing Diagram

Access
Method
Shadow
Database Database
(read, write) (write only)

5-2 Disk Shadowing

Using Shadowing for Disaster Recovery

Using Disk Shadowing for Disaster Recovery

InterBase provides disk shadowing as another mechanism for disaster recovery. Shad-
owing allows you to recover from hardware failures, which result in the loss of the main
database file. Shadowing does not allow you to recover from database corruption
caused by users. Compared to after-image journaling as a form of disaster recovery,
disk shadowing also has advantages and disadvantages as a means for disaster recov-

ery.
Some of the advantages of disk shadowing are:

* Minimal impact on performance. Only physical write operations are affected by a
disk shadow. The main database and the shadow file should be located on two dif-
ferent disks. This allows disk I/O to happen in parallel.

* Quick recovery. A shadow can be instantly activated for immediate use.

* Limited disk usage. A shadow is the same size as the database it is shadowing. If
you are shadowing a large database, you can define multiple-file shadows and
spread them over several disks.

* Starting a shadow does not require exclusive access to a database. You can start
a shadow at anytime, even when the database is in use.

* The shadow file is written by the database process and it does not require a sepa-
rate process from the database it is shadowing.

* An operator is not required to maintain a shadow.

Shadowing has a few disadvantages. You cannot:
¢ Shadow to tape.
¢ Recover the shadow to a specific time.

* Recover from user errors made to the database resulting in database corruption.
For example, if someone deletes important data from the database, it is also
deleted from the shadow.

* Shadow to a remote location. The shadow must be writable from the machine that
owns the disk that owns the database. For example, the shadow must be writable
from within a cluster in VMS, within a ring in an Apollo network, and within an
NFS mounted file system in a UNIX network.

In addition, shadowing duplicates every physical disk write and requires twice as much
available disk space as a database that does not have a shadow.

The following sections describe how to define a shadow, delete a shadow, and activate
a shadow.

Disk Shadowing 5-3

Defining a Shadow

Defining a Shadow

You can define a shadow two different ways—using the define shadow statement in
gdef, or by directly storing a record in the RDB$FILES system relation in gli. Using
the define shadow statement is the preferred method.

When you define a shadow using the define shadow statement, you can specify the
pathname, additional files, and a file length, or a starting page. You also specify
whether a shadow is automatically or manually deleted if it becomes unavailable. For
complete information on the syntax for the define shadow statement, see the entry

in the DDL Reference.

When you define a shadow for a database, it must be considered a
local file. You cannot define a shadow to a remote location. For
example, a shadow must be writable within a cluster on VMS, writ-
able within a ring in an Apollo network, or writable within an NFS

file system in a UNIX network.

Gdef automatically writes this information to the RDB$FILES system relation. Table
5-1 lists the fields used in the RDB$FILES system relation for defining a shadow .

/

Table 5-1. RDB$FILES System Relation

Field_Name Datatype

Length

Description

RDB$FILE_NAME Text

125

Contains a filename or a valid
system pathname for a
shadow or a secondary file.

RDB$FILE_SEQUENCE | Short

Specifies the order of files
within a shadow set.

RDB$FILE_START Long

RDBS$FILE_LENGTH Long

Specifies a starting page
number for shadows spanning
multiple files.

If the starting number is 0 or
null, one shadow file is cre-
ated.

Specifies the file length in
blocks

5-4 Disk Shadowing

Defining a Shadow

Table 5-1. RDB$FILES System Relation continued

Field_Name

Datatype

Length | Description

RDB$SHADOW _
NUMBER

Short

Specifies the shadow set
number. This indicates which

file the shadow set belongs to.

If the value of this field is O or
missing, InterBase assumes

the file being defined is a sec-
ondary file, not a shadow file.

Note

For a complete description of all fields in the RDB$FILES system
relation, see the appendix on system relations in the Data Defition
Guide.

To define a shadow:

1.

Invoke gdef and ready the database for which you want to define a shadow. For
example:

GDEF> modify database “/target_node/atlas.gdb”;

Define the shadow. Do not define the shadow on the same disk as the main
database. The example below defines a single-file shadow for the atlas.gdb
database. The shadow file is automatically deleted if it becomes unavailable:

GDEF> define shadow 1 auto “/target_node/atlas_shadow”;

When you define a shadow it is an exact copy of the main database.
Exit from gdef.
GDEF> exit

o
B

When you exit from gdef and the transaction commits, the shadow is enabled and
immediately begins recording updates to the main database. Gdef automatically
updates the RDB$FILES system relation with the shadow information.

Verify that you created the shadow. Invoke qli, and ready the database you creat-
ed the shadow for. Then use the show database statement to verify the shadow
is active. This example verifies that atlas_shadow was created for the atlas.gdb
database:

% gli

Welcome to QLI

Query Language Interpreter

Disk Shadowing 5-5

Defining a Shadow

QLI> ready atlas.gdb
QLI> show database
Database description:

U

Shadow 1, File: /target_node/atlas_shadow starting at page 0

Exit from qli.
QLI> exit

9
)

Caution

If you copy a database that has a shadow, both versions of the data-
base update the shadow file.

Defining a Multi-File Shadow

You define a multi-file shadow using the define shadow statement in gdef. When
defining a multi-file shadow, you must specify a starting page number for each file
within the shadow.

To define a multi-file shadow:

1.

5-6

Invoke gdef and ready the database for which you want to define the shadow. For
example:

GDEF> modify database “/target_node/atlas.gdb”;

Define shadow. The example below defines a two-file shadow with each file start-
ing at a different page:

GDEF> define shadow 2 auto “/target_node/atlas_shadow_a”
starting CON> at page 100

CON> file ”/target_node/atlas_shadow_b” starting at page 200
CON> file “/target_node/atlas_shadow_c” starting at page 300;

Exit from gdef.
GDEF> exit

When you exit from gdef and the transaction commits, the multi-file shadow is
enabled and immediately begins recording updates to the main database. Gdef
automatically updates the RDB$FILES system relation with the shadow informa-
tion.

Verify you created the shadow. Invoke qli and ready the database you created the
multi-file shadow for. Then use the show database statement to verify the shad-

Disk Shadowing

Defining a Shadow

ow files are active. The example verifies that all of the shadow files for the atlas.-
gdb database are active:

% gli
Welcome to QLT
Query Language Interpreter
QLI> ready atlas.gdb
QLI> show database
Database description:
|}
Shadow 2, File:/target_node/atlas_shadow_a starting at page 0
Shadow 2, File:/target_node/atlas_shadow_b starting at page 101
Shadow 2, File:/target_node/atlas_shadow_c starting at page 201

5. Exit from qli.
QLI> exit

Q
o°

Adding an Additional File to a Shadow

If you think your database might grow to be quite large, you might decide to add addi-
tional files to your existing shadow for the database. Adding a file to an existing
shadow is like adding a file to an existing database. If you add additional files to your
shadow, as your database grows and the first shadow file fills up, updates to the data-
base automatically overflow into the next shadow file.

Note

Adding a file to a shadow requires exclusive access to the database.
When you add an additional file to a shadow, you can assign the file any page size
value. If the value you assign is less than the size of the database, the value increments
one greater than the size of the current database. If the value you assign is greater than
the database size, a stub file is created. When the database reaches the assigned value,
it overflows into the secondary file.
To add an additional file to a shadow:

1. Invoke gdef and ready the database for which you want to add an additional shad-
ow file to. For example:

GDEF> modify database “/target_node/atlas.gdb”;

2. Define the additional shadow file. The example below adds another file to
atlas_shadow:

GDEF> define shadow 1 “/target_node/atlas_shadow_d”

Disk Shadowing 5-7

Defining a Shadow

Exit from gdef.
GDEF> exit

Q
)

When you exit from gdef and the transaction commits, the additional shadow file
is enabled. Depending on the value you assigned the file it may or may not imme-
diately begin recording updates to the main database. Gdef automatically up-
dates the RDB$FILES system relation with the shadow information.

Verify that you added the file or files to your shadow. Invoke qli and ready the da-
tabase you added the additional shadow file to. Then use the show database
statement to verify the shadow files are active. The example verifies the existence
of all shadow files for the atlas.gdb database:

% gli
Welcome to QLI
Query Language Interpreter
QLI> ready atlas.gdb
QLI> show database
Database description:
U
Shadow 1, File: /target_node/atlas_shadow starting at page 0
Shadow 1, File: /target_node/atlas_shadow_c starting at page
101

Exit from qli.

Disk Shadowing

Deleting a Shadow

Deleting a Shadow

If you no longer want to shadow a database, you can delete the physical shadow files
using the delete shadow statement in gdef. Once you delete a shadow, it immediately
stops recording updates from the database.

To delete a shadow:

1.

Invoke gdef and ready the database that has the shadow you want to delete. For
example:

GDEF> modify database “/target_node/atlas.gdb”;

Delete the shadow. The example below deletes the atlas_shadow:
GDEF> delete shadow 1

Exit from gdef.
GDEF> exit

When you exit from gdef and the transaction commits, the shadow stops
recording updates from the main database. In addition, the shadow is
automatically deleted from the RDB$FILES system relation.

Verify you deleted the shadow. Invoke qli and ready the database you created the
shadow for. Then use the show database statement to verify the shadow is no
longer active. For example:

% gli

Welcome to QLI

Query Language Interpreter

QLI> ready atlas.gdb

QLI> show database

Database description:

U

The information about the shadow file does not display in vyour
window or on your terminal.

Exit from qli.
QLI> exit

Disk Shadowing 5-9

Deleting a Shadow

Transaction Considerations

When you delete a shadow that is recording updates from the main database, it is
important to understand what happens to transactions during the time you are delet-
ing the shadow. The following list describes the possible outcomes of the update during
the transaction to delete the shadow:

e Updates to the main database occurring within the transaction that deleted the
shadow are recorded in the shadow.

¢ Updates to the main database occurring after the shadow is deleted are not
recorded in the shadow.

* Active transactions in the main database are considered rolled back in the shadow
when you delete the shadow.

5-10 Disk Shadowing

Activating a Shadow

Activating a Shadow

If the database you are shadowing becomes unavailable due to a hardware failure, you
can immediately activate your shadow using the gfix activate command. Be sure the
shadow is not in use before you activate it. A shadow is active if the main database has
active transactions. To activate a shadow, specify the pathname of the first file in a
shadow.

Caution

Do not activate a shadow unless your main database becomes
corrupt.

The following command activates a shadow:

o/S Command

Apollo AEGIS % gfix //jeeves/dbname_shadow -a
UNIX % gfix -a wanda:/dbname_shadow
VMS $ gfix/activate disk1:[recover]dbname_shadow

Once you activate the shadow, you may want to change the name of the shadow to the
name of your original database.

Disk Shadowing 5-11

Troubleshooting

Troubleshooting

The following section describes the errors you might encounter when you activate or
define a shadow. It also suggests a solution for the problem:

e shadow accessed; cannot attach active shadow file

You tried to attach to a database currently attached to another database as a
shadow. If the original database is available, erase the records in the RDB$FILES
system relation that define the shadow file. Otherwise, use the gfix activate com-
mand to convert the shadow to an active database.

¢ shadow missing; a file in the “pathname” is unavailable, shadow deleted

A file in the shadow has been deleted or is inaccessible. The shadow entry is delet-
ed from the RDB$FILES system relation in order to preserve the integrity of the
database. Redefine the shadow.

For a complete list of gdef error messages that can occur when defining additional
files, see the chapter on defining databases in the Data Definition Guide.

5-12 Disk Shadowing

For More Information

For More Information

For more information on:
* Alternative disaster recovery mechanisms, see Chapter 4, Journaling.

* Syntax for the define shadow and delete shadow statements, see DDL Refer-
ence.

* RDBS$FILES system relation, see the appendix on system relations in the Data
Definition Guide.

e gdef, see the Data Definition Guide.

Disk Shadowing 5-13

5-14

Chapter 6
Database Operations Reference

This chapter provides reference information on the InterBase utilities.

Overview

The following InterBase utilities are described in this chapter:
e ghbak

* gcon

* gscu

e gfix

4 grst

* gl

Database Operations Reference 6-1

Gbak

Gbak

Function

Syntax

Options

The gbak utility backs up and restores databases.

gbak [options] filel file2 [integer(,file3
[integer]...]

b[ackup_database]
Backs up filel to file2. This is the default database. You must
provide gbak with the secondary file specification in order to
restore the database to multiple files. Use this option when you
backup a database.

c[reate_database]
Restores a database from a backup file filel to a new file file2.
Create_database has the following operating system restric-
tions:

¢ VMS creates a new version of the database file

¢ UNIX and Apollo systems fail because gbak overwrites
existing files only if you specify the replace switch.

Use this option when you restore a database.

dlev] {mt|ct}
Specifies the device name when you backup a database to tape
or restore from tape. The device name is mt for magnetic tape
or ct for cartridge tape. This is an option for Apollo machines
only. Use this option when you backup a database.

e [xpand]
Tells gbak to produce an expanded database for a restore. Use
this option if you are restoring the backup with a pre-Version
2.4 version of gbak. Use this option when you backup a data-
base.

£
Restores database files starting at a specified page number.
When you restore a multi-file database, gbak lists the multiple
output files and their page size. The f option is optional. Use
this option when you restore a database.

Database Operations Reference

Gbak

Enables you to run gbak without performing garbage collec-
tion during database backup. Gbak only sweeps the active
copy of the database and not the previous versions when the -g
switch is used. This prevents the sweeping of old records.

i[nactive]
Makes indexes inactive so you can back up a database with
duplicate unique index values. Gbak does not work on data-
bases with duplicate unique index values unless you use this
option. Use this option when you restore a database.

-k (ill)
Restores database without its shadow.

1[imbo]
Ignores transactions that are in limbo. Use this option when
you backup a database.

m[etadata]
Backs up only the data definition in filel to file2. Specify this
option only if you want an empty version of an existing data-
base. Use this option when you backup a database.

nlo_validity]
Does not restore database validity conditions. Use this option
when you restore a database.

o[ne_at_a_time]
Commits after each relation in a database is restored. This
option is best used with the verify option. Use this option if you
are having problems restoring a database. It can help deter-
mine if a particular relation is a source of trouble. Use this
option when you restore a database.

plage_size] integer
Changes the page size of an existing database. You must first
back up the database without specifying this option, and then
restore it with the option. Use this option when you restore a
database.

Integer specifies the new page size. The default page size for a
database is 1024 bytes. You can specify a page size of 1024,
2048, 4096, or 8192 bytes. The advantage of a large page size is
that it allows a more shallow “tree” structure in the index. Each
index bucket is one page long, so longer pages mean larger

Database Operations Reference 6-3

Gbak

buckets and fewer levels in the hierarchy. Use this option when
you restore a database.

r[eplace_database]
Restores a database from a backup file filel, replacing any
existing file with the same name as file2. If you do not want to
overwrite the existing file, use the create_database option
instead of this one. Use this option when you restore a data-
base.

t [ransportable]
Builds a transportable backup. Long numeric datatypes such
as quads or dates are converted to a generic form. For example,
by using the t option, you can gbak a database on Apollo and
restore on VMS. Use this option when you backup a database.

vierify]
Provides detailed information about what is happening, as it
happens. Use this option when you backup a database.

Yy
Supresses output of error messages. Not available in V3.0.

z
Displays the version number of the software of this utility and
the access method.

filel

file2 [integer]

file3 [integer]
Valid file specifications. The database you access may be on
another computer in the network. This is called a remote
database, and the computer where it is stored on is called the
remote node. The node you are using is called the local node. If
the database you access is on the same node as you are, then it
is called a local database. To access a remote database, use the
full network pathname of the database file or establish a logical
link to it.

If you are in a directory other than the one that contains the
database file, the filespec must include the pathname. If the
database is on another node, the filespec must include the node
name and pathname. You can define a link or logical name for
the database file.

Database Operations Reference

Gbak

File specifications for remote databases have the following
form:

From

To Syntax

VMS

VMS via DECnet node-name::filespec

VMS

ULTRIX via DECnet node-name::filespec

VMS

non-VMS and non-ULTRIX | node-name”filespec

ULTRIX

VMS via DECnet node-name::filespec

Apollo

Apollo //mode-name/filespec

Everything Else

Whatever is left node-name:filespec

When you restore a database, you can place it in several files
using an optional file-length list. The first file is the primary
file, and subsequent files are called secondary files. The pri-
mary file is the first database file that is used by the InterBase
access method, and secondary files are where database pages
are allocated after the primary file is filled. You must specify a
length in database pages for each secondary file.

You will probably want to put secondary files on separate disks
because their purpose is to allow databases to grow beyond the
limits of a single disk. However, you must ensure that all files
in a database can be accessed directly by one program running
on some computer:

* On VMS systems, all files must be on disks mounted by
the same host or cluster-wide devices available to that
host.

* On Apollo systems, the files must be in the same ring.

¢ On Ultrix and Sun systems, the files must be in the same
directory tree, and cannot be mounted with NFS.

Examples The following command backs up a database:

0O/S Command
Apollo AEGIS % gbak atlas.gdb atlas.gbak -b

Database Operations Reference 6-5

Gbak

o/s Command
UNIX % gbak -b atlas.gdb atlas.gbak
VMS $ gbak/backup atlas.gdb atlas.gbak

The following command backs up a remote database. If you are
running on a UNIX system, you must enclose the remote data-
base name in single quotes:

o/s Command

Apollo AEGIS % gbak hyde:$disk1:[davis.work]atlas.gdb
atlas.gbak -b

UNIX % gbak -b ’hyde:$disk1:[davis.work]atlas.gdb’
atlas.gbak

VMS $ gbak/b/v gordon”/davis/work/atlas.gdb
atlas.gbak

The following example restores a backed up database to a new
file:

0/s Command

Apollo AEGIS % gbak atlas.gbak new_atlas.gdb -c
UNIX % gbak -c atlas.gbak new_atlas.gdb
VMS $ gbak/create_database atlas.gbak-

new_atlas.gdb

The following example builds a transportable backup database
file:

o/s Command

Apollo AEGIS % gbak atlas.gdb atlas.gbak -t

UNIX % gbak -t atlas.gdb atlas.gbak

VMS $ gbak/transportable atlas.gdb atlas.gbak

Database Operations Reference

Troubleshooting

Gbak

The following example backs up a database on an Apollo system
to a magnetic tape:

0/s Command
Apollo AEGIS % gbak atlas.gdb -b -dev mt

The following example restores a backed up database and replac-
es an existing file:

o/s Command

Apollo AEGIS % gbak atlas.gbak atlas.gdb -r

UNIX % gbak -r atlas.gbak atlas.gdb

VMS $ gbak/replace_database atlas.gbak atlas.gdb

The following example restores a backed up single-file database
to a multiple-file database:
o/s Command

Apollo AEGIS % gbak bigdatabase.gbak big_db.gdb 10000,
big_db.gdba 10000, big_db.gdbb 10000 -r

UNIX % gbak -r bigdatabase.gbak big_db.gdb 10000,
gig_db.gdba 10000, big_db.gdbb 10000
VMS $ gbak/replace_database bigdatabase.gbak -

big_db.gdb 10000, big_db.gdba 10000,
big_dbgdbb 10000

You may encounter the following messages when you use gbak:

* page size specified <n> greater than limit (8192) bytes
page size specified <n> rounded up to <n> bytes
page size parameter is missing

When you use the page_size option, you must specify an
increment of 1024, up to a maximum of 8192. If you specify a
number that is not an increment of 1024, InterBase rounds
up to the nearest increment.

Database Operations Reference 6-7

Gbak

6-8

page size is allowed only on restore or create

You used the page_size option for a backup. You can use this
option only during a restore.

redirect location for output is not specified
You specified an option reserved for future use by InterBase.
unknown switch <switch> or found unknown switch

You chose an option that is unknown or unsupported. See the
list above for supported options.

conflicting switches for backup [restore

At least two options you chose conflict with each other. For
example, you tried to backup and restore simultaneously.

requires input and output filename

You did not specify an input or an output filename. Correct
the command and try again.

input and output have the same name. Disallowed.

You gave the input and output file the same name. Correct
the command and try again.

REPLACE specified, but the first file <file> is a database

You tried to restore a database, but specified a database file
as the backup file. Be sure the first file you specify is a
backup file, correct the command, and try again.

database <database-name> already exists. To replace it, use
the -r switch

Gbak does not overwrite an existing database when you use
the create option. Change the name of the database or use
the replace option to overwrite the existing database.

can’t open backup file <filel>, <file2>

For some reason, gbak cannot open the backup file. Check
the filenames and the files themselves, correct the command,
and try again.

database <file> already exists. To replace it, use the -r switch.

You tried to overwrite a database file on a UNIX or Apollo
system without specifying the replace option. Correct the
command and try again.

Database Operations Reference

See Also

Gbak

* don’t recognize <switch> attribute <attribute> -- continuing

You specified an unknown parameter on the listed option,
but gbak continues processing the command.

* unexpected end of file on backup file

Gbak encountered the end of the backup file before it
expected it. Be sure the backup file does not terminate
abnormally. If it does, call Interbase Customer Support at 1-
800-437-7367.

* string truncated

You may encounter the following message when you use
gbak on an Apollo:

* multiple sources or destinations specified

When you used the device option, you specified two
filenames. Supply one filename and one device.

* device type not specified or device type <device> not known

When you used the device option, you did not specify a
device after the option, or you specified a device incorrectly.

* gbak” - name not found (OS/naming server)

This means that gbak does not show up anywhere along your
shell’s command search list. Check the search path, correct it
if necessary, and try again.

e can’t close APOLLO tape descriptor file <filename>

* can’t create APOLLO cartridge descriptor file <filename>
* can’t create APOLLO tape descriptor file <filename>

e can’t set APOLLO tape descriptor attribute for <filename>
* input filename will be ignored

* output filename will be ignored

These are Apollo-related problems. Contact Apollo Customer
Support if you receive any of these messages.

Chapter 2, Database Backup and Recovery.

The Data Definition guide for more information about multiple-
file databases.

Database Operations Reference 6-9

Gceon

Gcecon

Function

Syntax

Options

6-10

The gcon utility is a console program that communicates with
the journal server. It is available only on Apollo and UNIX sys-
tems.

gbak [options] filel file2 [integer(,file3
[integer]...]

g[ueue]
Queues a file or device for journaling to disk. Never journal to
the same disk with the database.

c[lose]
Closes the current journal file or device.

s[tatus]
Displays the status of the journal server. Status information
includes the state of journaling, the name of the output file, and
known databases and connections. This information is stored
in the journal database.

sh[utdown]
Shuts down the connection between gcon and the journal
server.

su[spend]
Suspends journaling temporarily.

r [esume]
Resumes journaling that has been suspended.

help]
Displays options with a brief description.

v[ersion]
Displays the version number of the software.

e[xit]
Exits from the journal server console program.

Database Operations Reference

Examples

Troubleshooting

Gcon

The following example shows how to queue a journal file:

% gcon

gltj> gueue journ.l

The following example shows stopping the journal server process:
% gcon

gltj> shutdown

You may encounter the following messages when you use gcon:

e “geon” - name not found (OS | naming server)

This means that gcon does not show up anywhere path or
shell’s command search list. Check your path, correct it if
necessary, and try again.

You may encounter the following messages when you use gcon
on an Apollo:
e Error occurred during mbx_$get_rec

An error occurred reading a response to gcon from the gltj
process.

This could be caused by any of the following reasons:
— Network trouble. See your system administrator for help.

— Incompatible versions of journaling on your system.
Check your version of Interbase. For more information on
running two versions of InterBase on your system, see
the InterBase Version 3.0 Release Notes.

— An mbx server is not running on all of the nodes used for
journaling. Check to see if there is an mbx server running
all nodes that are using journaling. If a server is not run-
ning, start one.

e Error occurred during mbx_$put_rec
An error occurred sending a command to the gltj process.
* Error occurred during mbx_$open
An error occurred opening a mailbox connection.
This could be caused by any of the following reasons:
— Network trouble. See your system administrator for help.

— Incompatible versions of journaling on your system.
Check your version of Interbase. For more information on

Database Operations Reference 6-11

Gcon

running two versions of InterBase on your system, see
the InterBase Version 3.0 Release Notes.

— Your gltj process or your entire network has gone away.
Type pst to see if you have a gltj process running. If you
do not have a gltj process running, start one.

You may encounter the following messages when you use gcon
on any UNIX system:

* Error occurred during close socket
Error occurred during socket read
Error occurred during socket
Error occurred during write socket

These could be caused by any of the following reasons:
— Network trouble. See your system administrator for help.

— Incompatible versions of journaling on your system.
Check your version of Interbase. For more information on
running two versions of InterBase on your system, see
the InterBase Version 3.0 Release Notes.

— Your gltj process or your entire network has gone away.
Check to see if you have a gltj process running.
On:

- System V UNIX, type ps -e

- UNIX, type ps -ax

- Apollo, type pst

If you do not have a gltj process running, start one.

If you get “Error occurred during socket” it may be because
your gltj process has reached its limit on the number of file
descriptors it can open.

If you receive any of the above messages, call InterBase Cus-
tomer Support at 1-800-437-7367.

e Error occurred during journal socket file open

You get this error message only if you get one of the following
error messages:

— Error occurred during journal socket file format

You have reached a journal file whose format InterBase
journaling does not recognize. Get out of gltj and check
your journaling directory path.

— Error occurred during address version

6-12 Database Operations Reference

Gcon

Gltj recognizes the version number of the journal file you
have opened, but the rest of the file’s format is not what
gltj expects. There may be a problem with the journal
file. Get out of gltj and check your journaling directory
path.

If you receive any of the above three error messages, call
InterBase Customer Support at 1-800-437-7367.

See Also See the entry in this chapter for:

* gltj
Chapter 4, Journaling.

Database Operations Reference 6-13

Gcesu

Gcesu

Function

Syntax

Options

6-14

The gesu utility manages central servers. It also displays system
management information about central servers.

gscu [-d|l-rl|l-k {-alfilespec}]
[-e server_name filespec]
[-1]
[-z]

-d
Disables a database by removing it from the list of databases
being serviced by a central server. Once a database is disabled,
no additional attachments for it are accepted by a central
server. However, existing attachments to the database are
unaffected by the disable command. A central server
terminates if all databases being serviced by it are disabled and
no user attachments remain.

-r
Re-enables a disabled database that has active attachments
through the central server. You can only re-enable a database
when at least one active attachment has existed since the data-
base was disabled. Re-enabling a database permits additional
attachments to it through the central server.

-k
Disables a database and detaches all current attachments to
the database through a central server. All active transactions
in the database are rolled back before the database is detached.
A central server terminates if all databases being serviced by it
are disabled or killed and no user attachments remain.

-a
Indicates that a disable, re-enable, or a kill command should
apply to all databases being serviced by all central servers.

filespec
An explicit pathname and database name. You can specify any
number of databases on the command line.

Database Operations Reference

Examples

Gcesu

-e
Adds a database to the list of databases being serviced by a spe-
cific central server.

server_name
A name you specified as the name of a central server.

-1
Lists the names of all databases being serviced by each central
server. For each database, it displays current number of
attachments and indicates whether a disable or kill command
has been issued for the database.

-2
Displays the version number of the software.

The following example enables a central server and lists the cen-
tral servers and the databases being serviced by them. The com-
mand syntax for UNIX and VMS is the same.

O0/S Command

UNIX % gesu -e sample //jeeves/interbase/atlas.gdb -1
VMS $ gcsu -e sample $disk1:[myown]atlas.gdb -1

Sample UNIX output for the above command is shown below:

Server
Attaches Flags Database Name

SAMPLE
0 //jeeves/interbase/atlas.gdb
3 //jeeves/interbase/emp.gdb

The following example disables a database from a central server:

0/S Command

UNIX % gcsu -d //jeeves/interbase/atlas.gdb
VMS $ gesu -d $diskl:Imyownlatlas.gdb

Database Operations Reference 6-15

Gcesu

Troubleshooting

6-16

The following example re-enables a database to a central server
and lists the central servers and the databases being serviced by
them:

0/S Command

UNIX % gcsu -r //jeeves/interbase/atlas.gdb -1
VMS $ gesu -r $disk1:[myown]atlas.gdb -1

Sample UNIX output for the above command is shown below:

Server
Attaches Flags Database Name

SAMPLE

2 //jeeves/interbase/atlas.gdb

You may encounter the following errors when you use the gcsu
utility:
e It’s likely that no central servers are operating.

You tried to invoke the gesu utility and there are no central
servers running.

* No central servers are operating.

You tried to list the central servers and there are not any
running.

* Database “filespec” could not be found so it was not used.

The database you specified is not being serviced by a central
server. Use the gcsu -1 command to list the databases using
a central server.

e Server “server_name” could not be found and so database
“filespec” was not enabled.

The central server you specified does not exist. Use the gcsu
-1 command to get a listing of the available central servers
and use one of those or start a new central server.

* The -e switch may only be used in conjunction with the -1 and
-z switches.

You used the e option with one or more of the d, k, or r
options. Use the e option alone or with the 1 or z options.

Database Operations Reference

Gcesu

¢ No command indicated with the -a switch. It will be ignored.
Specify one or more of the -d, -k, or -r options before
specifying the -a option.

* No command indicated for “filespec”. The name will be
ignored.
You specified a database without specifying a command. You
have to associate ad, k, r, or e options with a database name.

* Server could not enable database “filespec” because: “gd-
s_$print_status.”

This error prints the contents of the gds_$print_status. A
central server is started with the -a option, and the database
attachment fails. Determine what to do based on the message
returned by the gds_$print_status.

See Also The installation notes for system specific information on starting
a central server.

Database Operations Reference 6-17

Gfix

Gfix

Function

Syntax

Options

6-18

The gfix utility performs a variety of database maintenance op-
erations.

gfix filespec options

filespec
Specifies the database file on which to perform one or more of
the functions described below.

s [weep]
Walks through all records in all relations, releasing space held
by records that were rolled back and by out-of-date record ver-
sions. You can sweep a database without taking it off line. You
might consider running this utility in background at a low
priority.

h[ousekeeping] integer
Sets the automatic garbage collection interval. The integer
must be a single non-negative. The default it 20,000 transac-
tions. Setting an interval of O disables this option.

-k(ill)
Removes all unavailable shadows from a database.

v[alidate]
Walks through physical structures. This option requires exclu-
sive access to the database. By default, it locates and releases
pages that are allocated but not assigned to any structure (rela-
tions, indexes, and so on). It also reports any corrupt struc-
tures.

Options for validate are:

e flull] walks through record structures in addition to page
structures, releasing record fragments that are not
assigned to current records.

¢ n[o_update] validates and reports corrupt and misallo-
cated structures, but does not change them.

Database Operations Reference

Gfix

* m[end] fixes problems that cause records to be corrupt.
By default, mend marks records as corrupt so InterBase
skips them.

Most errors that validate finds occur if a program aborts, but
do not affect the integrity of the database. No committed data
is lost, and uncommitted updates are rolled back. However,
InterBase may have assigned a page from free space for the
records without using it. The validate option reports such
pages as “orphans” and assigns them to free space.

The validate option also locates problems caused by write
errors in the operating system or hardware. These errors may
make committed data unrecoverable and cannot be corrected
with validate. Use the mend full options to correct such
errors.

If validate finds corrupted records, copy the broken database
and send the copy to the following address for analysis:

Borland International Inc.
InterBase Support

1800 Green Hills Road

P. 0. 660001

Scotts Valley, CA 95067

You can also call Customer Support at 800-437-7367 from any-
where in the United States and Canada or at 408-431-5400
from outside of the United States. In addition, you can fax a
description of the problem to 408-439-7808.

Meanwhile, use mend to mark bad records. Run gbak with the
validate option again to ensure all is well. Unload and restore
the database for your own use.

two_phase
Commits or rolls back a transaction, depending on its state.
Prompts you for advice if all transactions are prepared and you
did not specify a commit or a rollback. Use the two-phase
option with list and prompt options.

1l(ist]
Lists the id numbers of transactions in limbo. Also list the part-
ner, current state, and action automated transaction would

Database Operations Reference 6-19

Gfix

Examples

6-20

take for multi-database transaction. Use with the two-phase
and prompt options.

plrompt]
Lists the transactions in limbo, and prompts the user for advice
on how to complete the two-phase commit process. Use with the
two-phase and list options.

-X

Sets debug on (for Apollo only).

-z
Prints software version number.

clommit] trans-id | all
Commits the transaction identified by the transaction id or all
transactions in limbo. Also commits the partners of the trans-
actions.

r[ollback] trans-id | all
Rolls back the transaction identified by the transaction id or all
transactions in limbo. Also rolls back the partners of the trans-
actions.

e[nable] journal-directory
Enables after-image journaling to the named journal directory.
You must first define a journal server using gltj. See the entry
in this chapter for glt;j.

d[isable]
Disables after-image journaling.

a[ctivate]
Activates a shadow file or shadow set. Once you activate the
shadow file or shadow set, you can attach to it and begin using
it as your database.

i[gnore]
Ignores the checksum errors.

The following command sets the automatic garbage collection in-
terval to 10,000 transactions:

0/S Command
Apollo $ gfix atlas.gdb -h 10,000

Database Operations Reference

Troubleshooting

Gfix

o/s Command

UNIX $ gfix -h 10,000 atlas.gdb
VMS $ gfix/housekeeping 10,000 atlas.gdb

The following command locates and releases pages and record
structures that were allocated but not assigned:

0/s Command

Apollo $ gfix atlas.gdb -v -f

UNIX $ gfix -v -f atlas.gdb

VMS $ gfix/validate/full atlas.gdb

The following command lists transactions in limbo, and prompts
for advice on how to complete the two-phase commit process:

o/s Command

Apollo $ gfix atlas.gdb -t -p -1

UNIX $ gfix -t -p -1 atlas.gdb

VMS $ gfix/two_phase/prompt/list atlas.gdb

The following command enables after-image journaling on a re-
mote database. If you are running on a UNIX system, you must
enclose the remote database name in single quotes:

0o/s Command

Apollo AEGIS % gfix hyde:$disk1:[davis]atlas.gdb -e
UNIX % gfix -e 'hyde:$disk1:[davis]atlas.gdb’
VMS $ gfix/enable gordon”/davis/atlas.gdb

You may encounter the following messages when you use gfix:

* database file name <file> already given

You included too many command line arguments without
leading hyphens.

Database Operations Reference 6-21

Gfix

See Also

6-22

tnvalid switch
An item is not a recognized option.
incompatible switch combinations

You specified at least two incompatible options on the same
command line (for example, enable and disable), or you
specified an option which has no meaning without another
option (for example, prompt used without list).

journal file pathname required
The enable option requires a journal directory pathname.

number of transactions per sweep required
numeric value required
positive number value required

The housekeeping option requires you provide a single non-
negative numeric.

transaction number or "all” required

The rollback and commit options require another argu-
ment specifying which transactions to alter.

please retry, giving a database name

You must specify a database name.

please retry, specifying an option

You must specify some option.

More limbo transactions than fit. Try again.

The database contains more limbo transactions than gfix
can print in a single session. Commit or rollback some of the
limbo transactions using the rollback, commit, and
two_phase options, or the list and prompt combination,
and then try again.

You may encounter the following message when you use gfix on
an Apollo:

“gfix" - name not found (OS/naming server)

This means that gfix does not show up anywhere along your
shell’s command search list. Check the search path, correct it
if necessary, and try again.

Other error messages come from the access method. See the
OSRI Guide for more information

Chapter 3, Database Maintenance.

Database Operations Reference

Gfix

If you write your own utility to perform some of the functions of
gfix, see the OSRI Guide.

Database Operations Reference 6-23

Gltj

Gltj

Function

Syntax

Options

Troubleshooting

6-24

The gltj utility is the journal server. It can be run interactively
from a window or a terminal using the debug option. When you
run gltj with the debug option, it recognizes the options listed

below. If you do not run gltj interactively, you must interact with
it through gcon.

gltj [options]

qlueue]
Queues a file or device for journaling to disk. Never journal to
the same disk with the database.

c[lose]
Closes the current journal file or device.

s[tatus]
Displays the status of the journal server. Status information
includes the state of journaling, the name of the output file, and
known databases and connections. This information is stored
in the journal database.

sh[utdown]
Shuts down the journal server. This option currently discon-
nects all processes running against it.

su[spend]
Suspends journaling temporarily.

r [esume]
Resumes journaling that has been suspended.

hlelp]
Displays gltj options with a brief description.

You may encounter the following messages when you use gltj on
an Apollo:

* "gltj" - name not found (OS /naming server)
This means that gltj does not show up anywhere along your
shell’s command search list. Check the search path, correct it
if necessary, and try again.

Database Operations Reference

See Also

Gltj

* operating system directive failed
no (library/MBX manager)
communication error with journal "journal_directory_name"

Although a journal has been defined for the database, there is no
active journla server. Use gltj to start the server.

See the entries in this chapter for gcon.

See Chapter 4, Journaling.

Database Operations Reference 6-25

Grst

Grst

Function

Syntax
Option

Example

Troubleshooting

See Also

6-26

The grst utility lets you restore a database from the after-image
or long-term journal.

grst [option]

ulntil]”timestamp”
Restores a database by rolling forward to a specified time.
When specifying the timestamp, use the DD-MMM-YY format
for the date, and the HH:MM:SS format for the time. Be sure
to enclose the timestamp in quotes. Grst prompts you at each
commit to apply the transaction.

If you do not specify a time, grst defaults to the beginning of
the day you specified. This option is only available on UNIX
systems.

The following example restores a database just before the 2:10 di-
saster occurred:

o/S Command

UNIX % grst -u “01-mar-90 14:05:00”

You may encounter the following message when you use grst on
an Apollo:

* “grst” - name not found (OS/naming server)

This means that grst does not show up anywhere along your
shell’s command search list. Check the search path, correct it
if necessary, and try again.

See the entries in this chapter for gcon.

Chapter 4, Journaling.

Database Operations Reference

A

Accessing
remote databases 2-6
After-image journaling
components 4-2
enabling with gfix 3-6
overview 3-6
see also Journaling
Apollo
journaling 4-5
restoring a database 2-7
shadow 5-3,5-11
WBAK 2-3

B

Backup database, see gbak
BACKUP, VMS back up utility 2-3
Bridge, see V3.0 Release Notes

C

Checkpoint, recreating database from 4-
23

Command line options, see Switches

commit
gfix 3-8

console.addr 4-5

Corrupt database repair 3-4

Customer support information 3-5, 6-19

D

Data integrity
overview 3-3

Database
administration overview 1-1
backup, see gbak
changing page size 2-9
file specifications 6-5
maintaining 3-1, 6-18-6-22
multi-file, see also Multi-file database
operations overview 1-1
page size 2-9
recovery overview 2-1

recreating from checkpoint 4-23
remote 2-6
repairing corrupt 3-4

database
administration overview 1-1
operations overview 1-1

date timestamp 4-12

Debug, see gltj

define shadow 5-4, 5-6

delete shadow 5-9

Disabling journaling 4-8, 4-19

Disaster recovery, see Shadowing, Jour-
naling

Disk shadowing, see Shadowing

E

Errors

gbak 6-7-6-9
gcon 6-11-6-13
gesu 6-16-6-17
gfix 6-21-6-22
gltj 6-24-6-25
grst 6-26
shadow 5-12

F

Fax number for InterBase 3-5, 6-19
File specifications
database 6-5

G
gbak

advantages 2-3
default device 2-5
errors 6-7-6-9
examples 6-5-6-7
heterogeneous networks 2-5
no_validity option 2-8
options 6-2-6-5
overview 2-1,6-2

tape 2-5
troubleshooting 6-7-6-9

Index- 1

user defined functions 2-8
XDR (transportable) format 2-5
gcon

definition 4-2

errors 6-11-6-13

options 4-8, 6-10
overview 6-10
troubleshooting 6-11-6-13
gesu

errors 6-16-6-17

options 6-14-6-15
overview 6-14
troubleshooting 6-16-6-17
gds_$attach_database 3-10
gds_S$reconnect_transaction 3-10
gds_S$transaction_info 3-10
gfix

activating 5-11
committing 3-8

errors 6-21-6-22
examples 6-20-6-21
housekeeping option 3-2
limbo transactions 3-7-3-9
options 3-2, 3-8, 6-18-6-20
overview 3-1,6-18
sweep option 3-2
transaction recovery 3-7
troubleshooting 6-21-6-22
two-phase commit 3-7
gltj

-debug option 4-5
debugging 4-5

definition 4-2

errors 6-24-6-25

options 6-24

overview 6-24

starting on UNIX 4-5
starting on VMS 4-15
troubleshooting 6-24-6-25
grst

date timestamp 4-12
definition 4-2

errors 6-26

Index-2

example 6-26
option 6-26
overview 6-26
troubleshooting 6-26

H

Heterogeneous networks
using gbak on 2-5
housekeeping, gfix option 3-2

I
interbasjrn 4-2
InterBase

fax number 3-5, 6-19
J

Journal.addr 4-5
Jjournal.gbak 4-6
Journal.gdb 4-6
Journal.log 4-5
Journaling
advantages and disadvantages 4-4
components 4-2
diagram 4-3
disaster recovery 4-10
files used 4-5
monitoring status 4-16
overview 4-1
permanent journal file 4-2
restoring to time and date 4-12
UNIX 4-5-4-13
see also UNIX Installation Guide
VMS 4-14-4-25
see also gltj, After image journaling

L

Limbo transactions 3-7-3-9

list, gfix option 3-8

Long-term journaling, see After image
journaling

M

Moving a database 2-5

Multi-file database
accessing 6-5
creating 2-10
primary file 6-5
secondary file 6-5

N
Network

accessing databases on 6-5
no_validity 2-8

O

ODS, see On-disk structure
On-disk structure (ODS) 2-11
Options, see Switches
Orphan pages 3-3
Overview
database operations 1-1
database recovery 2-1

P

Page size
changing 2-9
examples 2-9
guidelines 2-9
Performance
changing page size to improve 2-9
improvement 2-3
Primary file, see also Multi-file database
prompt, gfix option 3-8

R
rdb$files 5-4-5-5
Recovery
automatic 3-7
database 2-1
gfix 3-7
repairing corrupt database 3-4
see also Journaling, Shadowing, Two-
phase commit

transaction 3-7

UNIX 4-10-4-13

VMS 4-21-4-23
Remote database

accessing 2-6

backing up 2-6
Repairing corrupt database 3-4
Restoring a database

Apollo 2-7

see also gbak

UNIX 2-7

VMS 2-7

without valid_if 2-8
Restoring journal files, see grst

S

Secondary file, see also Multi-file data-
base 6-5
Shadow file, see Shadowing, defining
Shadow set, see Shadowing, multi-file
Shadowing
activating 5-11
adding file 5-7
advantages and disadvantages 5-3
components 5-2
defining 5-4
deleting 5-9
errors 5-12
multi-file 5-6-5-7
overview 5-1,5-3
transaction considerations 5-10
troubleshooting 5-12
Subtransaction 3-7
Sun
file specifications 6-5
journaling 4-2
sweep, gfix option 3-2
Switches
gbak 6-2-6-5
gcon 6-10
gesu 6-14-6-15
gfix 6-18-6-20
gltj 4-5,6-24

Index- 3

grst 6-26 backing up database files 2-3

BACKUP 2-3
T disaster recovery 4-21
Tape backup 2-5 journal files 4-17
tar 2-3 journaling 4-2, 4-14-4-25
TCP/IP multi-file database 6-5

remote database access 2-6, 6-5
restoring a database 2-7
shadow 5-4, 5-11

journal files 4-5
Transaction

automatic recovery restrictions, see

also gfix

recovery 3-7

recovery restrictions, see also gfix
Transportable backup (XDR format) 2-5
Troubleshooting

gbak 6-7-6-9

gcon 6-11-6-13

gesu 6-16-6-17

gfix 6-21-6-22

gltj 6-24-6-25

grst 6-26

shadow 5-12
Two-phase commit 3-7

U
UNIX
backing up to tape 2-4
journaling 4-5-4-13
remote database access 2-6
restoring a database 2-7
shadow 5-4, 5-11
tar 2-3
User defined function
using gbak with 2-8
Utilities
list 1-3
see gbak, gcon, gcsu, gdef, gfix,
see gltj, gpre, grst

\%

Validating a database 3-3
VMS

backing up 2-4

Index-4

